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1 Introduction

We use notation and terminology from [3]. In particular, for a graph K, we use TK to
denote a subdivision of K. The vertices in a TK corresponding to the vertices of K are
its branch vertices. Kelmans [6] and, independently, Seymour [11] conjectured that every 5-
connected nonplanar graph contains T'K5. In [7,[8], this conjecture is shown to be true for
graphs containing K .

In [3] we outline a strategy to prove the Kelmans-Seymour conjecture for graphs containing
no K, . Let G be a 5-connected nonplanar graph containing no K, . Then by a result of
Kawarabayashi [4], G contains an edge e such that G/e is 5-connected. If G/e is planar,
we can apply a discharging argument. So assume G/e is not planar. Let M be a maximal
connected subgraph of G such that G/M is 5-connected and nonplanar. Let z denote the
vertex representing the contraction of M, and let H = G/M. Then one of the following holds:

(a) H contains a K, in which z is of degree 2.
(b) H contains a K in which z is of degree 3.

(c) H does not contain K , and there exists 7' C H such that z € V(T'), T = Ky or T = K3,
and H/T is 5-connected and planar.

oes not contain K, , and for any 1" C with z € an =2 Koorl = Ks,
d) Hd in K, d f T C H with V(T dT = K. T = K.
H/T is not 5-connected.

In this paper, we deal with (a) by taking advantage of the K containing z. We prove the
following result, in which the vertex y» plays the role of z above.

Theorem 1.1 Let G be a 5-connected nonplanar graph and {x1,z2,y1,y2} € V(G) such that
GH{z1, 22, 91,92} = K| with y1y2 ¢ E(G). Then one of the following holds:

(1) G contains a TKjy in which ya is not a branch vertex.
(17) G —ya contains K, .

(ii7) G has a 5-separation (G1,G2) such that V(G1 N Ga) = {y2,a1,a2,as3,a4}, and Gy is the
graph obtained from the edge-disjoint union of the 8-cycle aibiasbsasbsasbsal and the
4-cycle bibobsbyby by adding yo and the edges y2b; for i € [4].

(v) For wi, w2, w3 € N(y2) — {z1, 22}, G — {y2v : v ¢ {wr1, w2, w3, 1, 22}} contains TKs.

Note that when Theorem[I1.1]is applied later, G will be a graph obtained from a 5-connected
nonplanar graph by contracting a connected subgraph, and y» represents that contraction. So
we need a TK5 in G to satisfy (i) or (iv) to produce a T K35 in the original graph. Note that
(7) will not occur if the original graph is K -free. Moreover, if (i) occurs then we may apply
Proposition 1.3 in [3] to produce a T Kj in the original graph.

The arguments used in this paper to prove Theorem is similar to those used in [7,|§].
Namely, we will find a substructure in the graph and use it to find the desired T'K5. However,
since the T'K5 we are looking for must use certain special edges at 19, the arguments here are
more complicated and make heavy use of the option (7).



We organize this paper as follows. In Section 2, we collect a few known results that will
be used in the proof of Theorem We will produce an intermediate structure in G which
consists of eight special paths XY, Z, A, B, C, P, Q, see Figure [l| (where X is the path in bold
and Y, Z are not shown). In Section 3, we find the path X in G between z; and zo whose
deletion results in a graph satisfying certain connectivity requirement. In Section 4, we find
the paths Y, Z, A, B,C, P, in G. In Section 5, we use this structure to find the desired T K5
for Theorem [L.1l

2 Previous results

Let G be a graph and A C V(G), and let k be a positive integer. Let [k] = {1,2,...,k}. Let C
be a cycle in G with a fixed orientation (so that we can speak of clockwise and anticlockwise
directions). For two vertices z,y € V(C), Cy denotes the subpath of C' from z to y in
clockwise order. (If x = y then xC'y denotes the path consisting of the single vertex x.) Recall
from [3] that G is (k, A)-connected if, for any cut 7' of G with |T| < k, every component
of G — T contains a vertex from A. We say that (G, A) is plane if G is drawn in the plane
with no crossing edges such that the vertices in A are incident with the unbounded face of
G. Moreover, for vertices a1, ...,a; € V(G), we say (G, a1, ...,ax) is plane if G is drawn in a
closed disc in the plane with no crossing edges such that ay,...,ar occur on the boundary of
the disc in this cyclic order. We say that (G, A) is planar if G has a plane representation such
that (G, A) is plane. Similarly, (G,ay,...,ax) is planar if G has a plane representation such
that (G, ay,...,ax) is plane.

In this section, we list a few known results that we need. We begin with a technical notion.
A 3-planar graph (G, .A) consists of a graph G and a collection A = {A;, ..., A} of pairwise
disjoint subsets of V(G) (possibly A = ) such that

e for distinct 7,5 € [k], N(A4;) N A; =0,
o for i € [k], IN(4;)| <3, and

e if p(G, A) denotes the graph obtained from G by (for each i € [k]) deleting A; and adding
new edges joining every pair of distinct vertices in N(A4;), then p(G,.A) can be drawn in
a closed disc with no crossing edges.

If, in addition, by,. .., by, are vertices in G such that b; ¢ A; for all ¢ € [n| and j € [k], p(G, A)
can be drawn in a closed disc in the plane with no crossing edges, and b4, ...,b, occur on the
boundary of the disc in this cyclic order, then we say that (G, A,b1,...,by,) is 3-planar. If
there is no need to specify A, we will simply say that (G,by,...,b,) is 3-planar.

It is easy to see that if (G, A,b1,...,b,) is 3-planar and G is (4,{b1,...,b,})-connected
then A =0 and (G, b1,...,by,) is planar.

We can now state the following result of Seymour [12]; equivalent versions can be found
in [11[13/14].

Lemma 2.1 Let G be a graph and s, sa,t1,ta be distinct vertices of G. Then exactly one of
the following holds:

(1) G contains disjoint paths from sy to t1 and from sa to ts.



(13) (G, s1,s82,t1,t2) is 3-planar.

We also state a generalization of Lemma [2.1] which is a consequence of Theorems 2.3 and
2.4 in [10].

Lemma 2.2 Let G be a graph, vi,...,v, € V(Q) be distinct, and n > 4. Then ezactly one of
the following holds:

(i) There exist 1 < i < j < k <l < n such that G contains disjoint paths from v;,vj to
v, Uy, respectively.

(1) (G,v1,v2,...,vy) is 3-planar.
The next result is Theorem 1.1 in [3].

Lemma 2.3 Let G be a 5-connected nonplanar graph and let (G1,G2) be a 5-separation in G.
Suppose |V(G;)| > 7 fori € 2], a € V(G1 N G3), and (Gy — a,V(G1 N Gy) — {a}) is planar.
Then one of the following holds:

(1) G contains a TKy in which a is not a branch vertez.
(i1) G — a contains K .

(17i) G has a 5-separation (G, GY) such that V(G N GY) = {a,a1,a2,a3,a4}, G1 C G, and
L is the graph obtained from the edge-disjoint union of the 8-cycle a1biasbsasbsasbsar
and the 4-cycle bibabsbaby by adding a and the edges ab; for i € [4].

Another result we need is Theorem 1.2 from [3].

Lemma 2.4 Let G be a 5-connected graph and (G1,G3) be a 5-separation in G. Suppose
that |V(G;)| > 7 for i € 2] and G[V(G1 N G2)| contains a triangle aayaza. Then one of the
following holds:

(1) G contains a TKjy in which a is not a branch vertex.
(i7) G —a contains K .

(i4i) G has a 5-separation (G, G%) such that V(G| N GY) = {a,a1,a2,a3,a4} and G is the
graph obtained from the edge-disjoint union of the 8-cycle aibiasbsasbsasbsar and the
4-cycle bibobsbyby by adding a and the edges ab; for i € [4].

(tv) For any distinct uy,ug,us € N(a) — {a1,a2}, G — {av : v &€ {a1,a2,u1,u2,us}} contains
TKs.

We also need Proposition 4.2 from [3].

Lemma 2.5 Let G be a 5-connected nonplanar graph and a € V(G) such that G —a is planar.
Then one of the following holds:

(i) G contains a TKs in which a is not a branch vertex.



(i1) G — a contains K .

(iii) G has a 5-separation (G1,G3) such that V(G1 N Gy) = {a,a1,a2,a3,a4} and Gy is the
graph obtained from the edge-disjoint union of the 8-cycle aibiasbsasbsasbsar and the
4-cycle bibabsbyby by adding a and the edges ab; for i € [4].

We will make use of the following result of Perfect [9] on independent paths. A collection
of paths in a graph are said to be independent if no internal vertex of a path in this collection
belongs to another path in the collection.

Lemma 2.6 Let G be a graph, u € V(G), and A C V(G — u). Suppose there exist k inde-
pendent paths from u to distinct aq,...,ar € A, respectively, and otherwise disjoint from A.
Then for any n > k, if there exist n independent paths Py, ..., P, in G from u to n distinct

vertices in A and otherwise disjoint from A then Pi,..., P, may be chosen so that a; € V (F;)
for i € [k].

We will also use a result of Watkins and Mesner [15] on cycles through three vertices.

Lemma 2.7 Let G be a 2-connected graph and let yi,y2,ys be three distinct vertices of G.
Then there is no cycle in G containing {y1,y2,y3} if, and only if, one of the following state-
ments holds:

(1) There exists a 2-cut S in G and there exist pairwise disjoint subgraphs Dy, of G — S,
i =1,2,3, such that y; € V(D,,) and each Dy, is a union of components of G — S.

(it) There exist 2-cuts Sy, of G, i =1,2,3, z € Sy, NSy, NSy,, and pairwise disjoint subgraphs
Dy, of G, such that y; € V(Dy,), each Dy, is a union of components of G — Sy,, and
Sy, — {2}, Sy, — {2}, Su — {2} are pairwise disjoint.

(tii) There exist pairwise disjoint 2-cuts Sy, in G, i =1,2,3, and pairwise disjoint subgraphs
Dy, of R — Sy, such that y; € V(Dy,), each Dy, is a union of components of G — Sy,
and G — V(Dy, U Dy, U D,,) has precisely two components, each containing exactly one
vertex from Sy, for i € [3].

3 Nonseparating paths

Our first step for proving Theorem is to find the path X in G (see Figure|l)) whose removal
does not affect connectivity too much.

We need the concept of chain of blocks. Let G be a graph and {u,v} C V(G). We say that
a sequence of blocks By, ..., B, in G is a chain of blocks from u to v if either £k = 1 and u,v €
V(By) are distinct, or k > 2, u € V(B1)—V(B3),v € V(Bg)—V(Bg_1), |V(B;)NV(Bi+1)| =1
for i € [k — 1], and V(B;) N V(B;) = 0 for any 4, j € [k] with |[i — j| > 2. For convenience, we
also view this chain of blocks as Ule B;, a subgraph of G.

The following result was implicit in [2,5]. Since it has not been stated and proved explicitly
before, we include a proof. We need the concept of a bridge. Let G be a graph and H a
subgraph of G. Then an H-bridge of G is a subgraph of G that is either induced by an edge
of G — E(H) with both ends in V(H), or induced by the edges in some component of G — H
as well as those edges of G from that component to H.



Lemma 3.1 Let G be a graph and let x1,x2,y1,y2 € V(QG) be distinct such that G is (4, {x1,x2,y1,y2})-
connected. Suppose there exists a path X in G — x1x2 from x1 to xo such that G — X contains
a chain of blocks B from y1 to yo. Then one of the following holds:

(1) There is a 4-separation (G1,G2) in G such that B + {x1,z2} C Gy, |V(G2)| > 6, and
(G2, V(G1 N Gy)) is planar.

(i1) There exists an induced path X' in G — x1xo from x1 to x9 such that G — X' is a chain
of blocks from y1 to yo and contains B.

Proof. Without loss of generality, we may assume that X is induced in G — x1x2. We choose
such X that

(1) B is maximal,
(2) the smallest size of a component of G — X disjoint from B (if exists) is minimal, and
(3) the number of components of G — X is minimal.

We claim that G — X is connected. For, suppose G — X is not connected and let D be
a component of G — X other than B such that |V (D)| is minimal. Let u,v € N(D) NV (X)
such that «Xv is maximal. Since G is (4, {z1,%2,y1,y2})-connected, uXv — {u,v} contains a
neighbor of some component of G— X other than D. Let @ be an induced path in G[D+{u, v}]
from u to v, and let X’ be obtained from X by replacing uXv with Q. Then B is contained
in B’, the chain of blocks in G — X’ from y; to y2. Moreover, either the smallest size of a
component of G — X’ disjoint from B’ is smaller than the smallest size of a component of
G — X disjoint from B, or the number of components of G — X’ is smaller than the number
of components of G — X. This gives a contradiction to (1) or (2) or (3). Hence, G — X is
connected.

If G— X = B, we are done with X’ := X. So assume G— X # B. By (1), each B-bridge of
G — X has exactly one vertex in B. Thus, for each B-bridge D of G— X, let bp € V(D)NV(B)
and up,vp € N(D —bp) NV (X) such that upXvp is maximal.

We now define a new graph B such that V(B) is the set of all B-bridges of G — X, and
two B-bridges in G — X, C' and D, are adjacent if ucXve — {uc,ve} contains a neighbor of
D —bp or upXvp — {up,vp} contains a neighbor of C' — be. Let D be a component of B.
Then Upey (p) upXvp is a subpath of X. Let Sp be the union of {bp : D € V(D)} and the
set of neighbors in B of the internal vertices of | J Dev (D) U pXvp.

Suppose B has a component D such that |Sp| < 2. Let u,v € V(X) such that uXv =
Upev(py upXvp. Then {u,v} U Sp is a cut in G. Since G is (4, {z1, 22, y1,y2})-connected,
|Sp| = 2. So there is a 4-separation (G1,G2) in G such that V(G1 N Ga) = {u,v} U Sp,
B+ {z1,22} € G1, and D C Gy for D € V(D). Hence |[V(G2)| > 6. If G2 has disjoint
paths S, .59, with S from u to v and S5 between the vertices in Sp, then choose S; to be
induced and let X’ = z1Xu U S1 UvXzo; now B U Sy is contained in the chain of blocks in
G — X' from y; to yg2, contradicting (1). So no such two paths exist. Hence, by Lemma
(G2, V(G1 N Gy)) is planar and thus (¢) holds.

Therefore, we may assume that |Sp| > 3 for any component D of B. Hence, there exist a
component D of B and D € V(D) with the following property: upXvp — {up,vp} contains



vertices wy,wp and Sp contains distinct vertices by, by such that for each i € [2], {b;, w;} is
contained in a (B U X)-bridge of G disjoint from D — bp. Let P denote an induced path in
G[D + {up,vp}] between up and vp, and let X’ be obtained from X by replacing upXvp
with P. Clearly, the chain of blocks in G — X’ from y; to y2 contains B as well as a path from
b1 to be and internally disjoint from D U B. This is a contradiction to (1). ]

We now show that the conclusion of Theorem [I.1]holds or we can find a path X in G such
that y1,y2 ¢ V(X) and (G — y2) — X is 2-connected.

Lemma 3.2 Let G be a 5-connected nonplanar graph and let x1,x2,y1,y2 € V(G) be distinct
such that G[{z1,x2, 71, y2}] = K, with y1y2 ¢ E(G). Then one of the following holds:

(i) G contains a TKs in which y2 is not a branch vertez.
(17) G —y2 contains K .

(tit) G has a 5-separation (G1,G2) such that V(G1 N Ga) = {y2, a1, a2,a3,a4} and Gy is the
graph obtained from the edge-disjoint union of the 8-cycle aibiasbsasbsasbsa; and the
4-cycle bibabsbsby by adding ya and the edges yab; for i € [4].

(iv) For wi,wa,wg € N(y2) —{x1,22}, G—{yav : v & {wy,wa, w3, x1,x2}} contains TKs, or
G — x1x2 has an induced path X from x1 to xa such that y1,y2 ¢ V(X), w1, we,ws €
V(X), and (G — y2) — X is 2-connected.

Proof. First, we may assume that

(1) G—z122 has an induced path X from x; to x2 such that y1,y2 ¢ V(X) and (G—y2) — X
is 2-connected.

To see this, let z € N(y1) — {x1,x2}. Since G is 5-connected, (G — x1x2) — {y1,y2, 2} has a
path X from x1 to xo. Thus, we may apply Lemma to G —y9, X and B = y; 2.

Suppose (i) of Lemma[3.1holds. Then G has a 5-separation (G, G2) such that y» € V/(G1N
Gg), {a;l,a:g,yl,z} g V(Gl) and Y1z € E(Gl), ‘V(Gg)‘ Z 7, and (G2 — yQ,V<G1 ﬂGg) - {yg})
is planar. If [V/(G1)| > 7 then, by Lemma [2.3] (i) or (i) or (iii) holds. If |[V(G1)| = 5 then
G1 — y2 has a K or G — ys is planar; hence, (i7) holds in the former case, and (i) or (i7)
or (ii7) holds in the latter case by Lemma Thus we may assume that |V (G;)| = 6. Let
v € V(G1 — G2). Then v # ys. Since G is 5-connected, v must be adjacent to all vertices in
V(G1 N Gg). Thus, v # y1 as y1y2 ¢ E(G). Now |V(G1 N G2) N{z1,x2,2}| > 2. Therefore,
GH{v,y1} U(V(G1 N Ge) N{x1,x2,2})] contains K ; so (ii) holds.

So we may assume that (i7) of Lemma holds. Then (G — y2) — z122 has an induced
path, also denoted by X, from 1 to z2 such that (G — y2) — X is a chain of blocks from y; to
z. Since zy; € E(G), (G —y2) — X is in fact a block. If V((G —y2) — X) = {y1, 2z} then, since
G is 5-connected and X is induced in (G — y2) — z1x2, G[{z1,%2,2,y1}] = Ky; so (ii) holds.
This completes the proof of (1).

We wish to prove (iv). So let wi, wa, w3 € N(y2) —{z1, 22} and assume that
G =G —{yv: v & {wy,ws,ws, 1,72} }

does not contain T'K5. We may assume that



(2) w1, W, W3 §é V(X)

For, suppose not. If wy, wy, ws € V(X) then (iv) holds. So, without loss of generality, we may
assume wy € V(X) — {z1,22} and we € V(G — X). Since X is induced in G — z1z2 and G is
5-connected, (G —y2) — (X —w;) is 2-connected and, hence, contains independent paths Py, P,
from y; to wy, wa, respectively. Then wy Xz Uwi X xoUwiyoUPU(yowe U P ) UG {21, 22, y1, Y2 }]
is a TK5 in G’ with branch vertices w1, z1, z2,y1,y2, a contradiction.

(3) Forany u € V(x1Xxo)—{x1, 22}, {u,y1,y2} is not contained in any cycle in G' — (X —u).

For, suppose there exists u € V(z1Xx2) — {x1, 22} such that {u,y1,y2} is contained in a cycle
Cin G'— (X —u). Then uXz1 UuXzoUCUG[{z1,22,y1,92}] is a TK5 in G’ with branch
vertices u, x1, T2, Y1, Y2, a contradiction. So we have (3).

Let y3 € V(X) such that yszo € F(X), and let H := G' — (X — y3). Note that H
is 2-connected. By (3), no cycle in H contains {y1,y2,y3}. Thus, we apply Lemma to
H. In order to treat simultaneously the three cases in the conclusion of Lemma we
introduce some notation. Let Sy, = {a;,b;} for i € [3], such that if Lemma [2.7)(i) occurs
we let a1 = ag = as, by = by = by, and S, = S for i € [3]; if Lemma [2.7)(é) occurs then
a1 = ap = az; and if Lemma [2.7(ii7) then {a1,as, a3z} and {b1,bs, b3} belong to different
components of H — V(Dy, U Dy, U Dy,). If Lemma [2.7)(ii) or Lemma [2.7)(iii) occurs then let
B,, By denote the components of H —V(D,, U Dy, UD,,) such that for i € [3] a; € V(B,) and
b; € V(By). Note that B, = By, is possible, but only if Lemma [2.7)(#i) occurs.

For convenience, let D} := G'[D,, + {a;,b;}] for i € [3]. We choose the cuts S, so that

(4) D} U D5 U Dg is maximal.

Since H is 2-connected, D}, for each i € [3], contains a path Y; from a; to b; and through y;. In
addition, since (G — y2) — X is 2-connected, for any v € V(D}) — {as, b3, y3}, D5 — y3 contains
a path from ag to b3 through wv.

(5) If B, N By, = 0 then |V(B,)| = 1 or B, is 2-connected, and |V (Bp)| = 1 or By is
2-connected. If B, N By # () then B, = By, and B, — a3 is 2-connected.

First, suppose B,N By, = (). By symmetry, we only prove the claim for B,. Suppose |V (B,)| > 1
and By, is not 2-connected. Then B, has a separation (B, B2) such that |V (B1NBy)| < 1. Since
H is 2-connected, |V (B1 N Bg)| = 1 and, for some permutation ijk of [3], a; € V(B1) — V(Bs)
and aj, ay € V(Bz2). Replacing Sy,, D! by V(B1NBy)U{b;}, D;UBy, respectively, while keeping
Syj,D}7 Sy, Dy, unchanged, we derive a contradiction to (4).

Now assume B, N By, # (). Then B, = By by definition, and a; = as = a3 by our assump-
tion above. Suppose B, — a3 is not 2-connected. Then B, has a 2-separation (Bj, Bs) with
ag € V(By N By). First, suppose for some permutation ijk of [3|, b; € V(By) — V(Ba)
and b;,b, € V(B2). Then replacing Sy,,D; by V(B1 N By), D, U By, respectively, while
keeping Sy, D}, Sy,, D), unchanged, we derive a contradiction to (4). Therefore, we may
assume {by,be,b3} C V(Bj). Since G is 5-connected, there exists r/ € E(G) such that
r € V(X)—{ys,z2} and ' € V(B2 — By). Let R be a path By — (B; — a3) from ag to r/, and
R’ a path in By — Bs from by to by. Then (RUr'rUrXazi)U (asYsysUysxe) UasYiyr UasYaya U
(y1Y1b1 U R'UbyYoye) U G[{x1, x2,y1,y2}] is a TK5 in G' with branch vertices as, x1, 2, y1, Y2,
a contradiction.



(6) D, is connected for i € [3].

Suppose D, is not connected for some ¢ € [3], and let D be a component of D,, not containing
y;. Since G is 5-connected, there exists r/ € FE(G) such that r € V(X) — {x2,y3} and
r" e V(D).

Let R be a path in G[D + ;] from a; to 7, and R’ a path from b; to by in By — as.
By (5), let Ay, A2, A3 be independent paths in B, from a; to ai,az,as, respectively. Then
(RUT’TU’I‘XI’l) U (Al UalYlyl) U (AQ U(ZQ}/QZ/Q) U (Ag UasY3ys Uygl’g) U (y1Y1b1 UR,UbQYéyg) U
G{z1,72,y1,y2}] is a TK5 in G’ with branch vertices a;, z1, 2, y1,y2, a contradiction.

(7) If a1 = ag = a3 then N(a3) N V(X — {xz2,y3}) = 0.

For, suppose a1 = az = az and there exists v € N(ag) N V(X — {z2,y3}). Let Q be a
path in B, — ag between b; and by, and let P be a path in D} — b3 from ag to y3. Then
(azuUuXzi) U (PUysz2) UagYiyr UasYays U (y1Y1b1 UQ U boYoys) U G{x1, 22, y1,y2}] is a
TK5 in G’ with branch vertices as, x1, T2, y1, y2, a contradiction.

We may assume that
(8) there exists u € V(X) — {x1,x2,y3} such that N(u) — {y2} € V(X U D}).

For, suppose no such vertex exists. Then G has a 5-separation (G1, G2) such that V(G1NG3) =
{as, b3, z1,22,y2}, X U D5 C Gy, and D] U D) U B, U B, C Gy. Clearly, |V(G2)| > 7 since
IN(y1)| > 5 and y1y2 ¢ E(G). If |V(G1)| > 7 then, by Lemma (1) or (ii) or (iti) or
(iv) holds. So we may assume |V (Gy)| = 6. Then X = zjys3xe and V(D,,) = {y3}. Hence,
G{z1,22,y1,y3}] = K, ; so (ii) holds.

(9) For all u € V(X) — {x1, 22, y3} with N(u) —{y2} € V(X UD%), N(u)NV(Dj —ys3) = 0.

For, suppose there exist v € V(X) — {x1,22,y3}, w1 € (N(u) — {y2}) — V(X U Dj), and
ug € N(u)NV(D5 —y3). Recall (see before (5)) that there is a path Y3 in D} — y3 from a3 to
b3 through us.

Suppose u; € V(D,,) for some i € [2]. Then D} —b; (or D, — a;) has a path Y] from u; to
a; (or b;) through y;. If YZ»’ ends at a; then let P,, P, be disjoint paths in B, U By from aq, b3
to ag, bs_;, respectively; now Y/ U P, UY3_; U P, U b3Yqus Uuguug is a cycle in G' — (X — u)
containing {u,y1,y2}, contradicting (3). So Y/ ends at b;. Let P,, P, be disjoint paths in
B, U By, from by, az—; to by, as, respectively. Then Y/ U P, UY3_; U P, U agYqup U uguu; is a
cycle in G’ — (X — u) containing {u, y1,y2}, contradicting (3).

Thus, u; € V(B,UBy). By symmetry and (7), assume u; € V(B). Note that u; ¢ {as, b3}
(by the choice of u1) and By — ag is 2-connected (by (5)). Hence, B, — ag has disjoint paths
Q1,Q2 from {uy,bs3} to {b1,b2}. By symmetry between b; and be, we may assume @ is
between u; and b; and Q2 is between b3 and be. Let P be a path in B, from ay to ag (which is
trivial if |V (Bg)| = 1). Then Q1 Uujuug UuaYsb3 U Q2 UYo UPUY] is a cycle in G' — (X —u)
containing {yj,y2,u}, contradicting (3).

(10) For any u € V(X)) —{x1,z2,y3} with N(u) —{y2} € V(X U D}%), there exists i € [2] such
that N(u) — {y2} C V(D)) and {a;, b;} Z N(u).



To see this, let uj,us € (N(u) — {y2}) — V(X U Dj) be distinct, which exist by (9) (and since
X is induced in G' — z122). Suppose we may choose such wuy, ug so that {uy,us} ¢ V(D)) for
i€ [2].

We claim that {u1,us} € V(B,) and {uy,us} € V(By). Recall that if B, N By, # () then
B, = By and if B, N By, = () then there is symmetry between B, and By. So if the claim fails
we may assume that uy, ug € V(Bp). Then by (5), By — as is 2-connected; so By — a3 contains
disjoint paths Q1, Q2 from {u1,us} to {b1,be}. If B, = By, let P = a3. If B,N By, = (), then let
P be a path in B, from a; to as. Now Q1 Uujuus UQ2UY1 UPUY3 is a cycle in G — (X —u)
containing {u, y1,y2}, contradicting (3).

Next, we show that {a;,b;} € N(u) for ¢ € [2]. For, suppose u; = a; and ug = b; for some
i € [2]. Then, since {uy,us} N{as, b3} =0, [V(B,)| > 2 and |V(By)| > 2. By (5), let P, P,
be independent paths in B, from a; to as_;, as, respectively, and 1, Q2 be independent paths
in By, from b; to bs_;, bs, respectively. Now ua; U ub; U a;Y;y; U b;Yiy; U (y;z1 Uz Xu) U (P U
Y3 UQ1)U(PyUasYsys) U (Q2UbsYsys) UuXys Uy;xoys is a TK5 in G’ with branch vertices
a;, bi, u, i, y3, a contradiction.

Suppose u; € V(B, — a3) and ug € V(By, — b3). Then |V(B,)| > 2 and |V(By)| > 2. Let
Yy be a path in D§ — y3 from a3 to bs. First, assume that u; € {ai,a2} or up € {b1,ba}.
By symmetry, we may assume u; = aj. So uz # b;. By (5), B, — a1 contains a path P
from as to a3, and By, contains disjoint paths Q1, Q2 from {by, b3} to by, ug, respectively. Then
Y1UQ1UY2UPUYUQ2Uuuusg is a cycle in G'— (X —u) containing {u, y1, y2 }, contradicting (3).
Souy ¢ {a1,a2} and ug ¢ {b1,b2}. Then by (5) and symmetry, we may assume that B, contains
disjoint paths Py, P, from w1, ag to ai, ag, respectively. By (5) again, By contains disjoint paths
Q1, Q2 from by, ug, respectively to {ba,b3}. Now PLUY; UQ1UY2U Py UY{UQ2Uuguuy is a
cycle in G’ — (X — u) containing {u, y1,y2}, contradicting (3).

Therefore, we may assume u; € V(D,,) for some i € [2]. By symmetry, we may assume
that u; € V(D,y,) and D] — a1 contains a path R; from wu; to by and through y;. Then
ug ¢ V(D)) as we assumed {uy,us} € V(D).

Suppose ug € V(D,,). If D) — ay contains a path Ry from ug to by through yo then let @
be a path in By from by to be; now R; U QU Ro Uuguug is a cycle in G/ — (X — u) containing
{u,y1,y2}, contradicting (3). So D) — by contains a path Ry from us to as and through ys.
Now let P be a path in B, from as to ag, @ be a path in B, — a3 from b; to bs. Let Y3 be a
path in D} — y3 from a3 to bs. Then R; UQ U Y{ U P U Ry Uuguuy is a cycle in G — (X — u)
containing {u,y1,y2}, contradicting (3).

Finally, assume uy € V (B, U By). If ug € V(By) then, by (5), let Q1,Q2 be disjoint paths
in By, — ag from by, ug, respectively, to {be, b3}, and let P be a path in B, from as to az; now
uguu; UR; UQ1UQ2UY2UPUYY is a cycle in G — (X —w) containing {u, y1,y2}, contradicting
(3). So ug ¢ V(By) and uy € V(B, — ay); hence B, N B, = ). Let P be a path in B, from
u2 to as and @ be a path in By from b1 to by, Then wouuy U Ry UQ U Yo U P is a cycle in
G’ — (X — u) containing {u, y1,y2}, contradicting (3). This completes the proof of (10).

By (10) and by symmetry, let u € V(X) — {x1,22,y3} and uj,us € N(u) such that
up € V(Dy,) and up € V(D)). If G[D) + u] contains independent paths Ri, Ry from u to
ay, by, respectively, such that y; € V(R U Ry), then let P be a path in B, between a; and
as and @ be a path in By — ag between by and bg; now R1 U P U Yo U Q U Rs is a cycle in
G’ — (X — u) containing {u,y1,y2}, contradicting (3). So such paths do not exist. Then in
the 2-connected graph D} := G[D/ + u] + {c, ca1,cb1} (by adding a new vertex c¢), there is no
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cycle containing {c,u,y:}. Hence, by Lemma 2.7, D has a 2-cut T separating y1 from {u, c},
and T N {u,c} = 0.

We choose u, u1, up and 7' so that the T-bridge of D] containing y;, denoted B, is minimal.
Then B — T contains no neighbor of X — {x1,z2}. Hence, G has a 5-separation (G, G2) such
that V(G1NG2) = {z1, 22,92} UV (T), B C Gy, and X UDLU D4 C Gy. Clearly, |V(G2)| > 7.
Since y1y2 ¢ E(G) and G is 5-connected, |V(G1)| > 7. So (i) or (ii) or (ii7) or (iv) holds by
Lemma 2.4 1

4 An intermediate substructure

By Lemma to prove Theorem it suffices to deal with the second part of (iv) of
Lemma Thus, let G be a 5-connected nonplanar graph and 1,2, y1,y2 € V(G) be dis-
tinct such that G[{z1,z2,y1,y2}] = K with y1y2 ¢ E(G), let wy, we, w3 € N(y2) — {x1, 22}
be distinct, and let P be an induced path in G — zjx2 from z; to x2 such that yi,y2 ¢ V(P),
wy,we,ws € V(P), and (G — y2) — P is 2-connected.

Without loss of generality, assume z1, w1, we, w3, zo occur on P in order. Let

X = 21 Pw; Uwyyows U ws Pxo,

and let
G =G —{yv: v & {w1,wo, w3, 1,72} }.
Then X is an induced path in G’ — 129, y1 ¢ V(X), and G’ — X is 2-connected. For
convenience, we record this situation by calling (G, X, z1, z2, y1, Y2, w1, wa, ws) a 9-tuple.
In this section, we obtain a substructure of G’ in terms of X and seven additional paths
A,B,C,P,Q,Y,Z in G'. See Figure (I} where X is the path in boldface and Y, Z are not
shown. First, we find two special paths Y, Z in G’ with Lemma below. We will then use

Lemma, to find the paths A, B,C, and use Lemma to find the paths P and Q. In the
next section, we will use this substructure to find the desired T K5 in G or G'.

Lemma 4.1 Let (G, X, x1,x2,y1, Y2, w1, w2, ws) be a 9-tuple. Then one of the following holds:
(1) G contains TKs in which yo is not a branch vertex, or G' contains TKs.
(17) G —ya contains K .

(ii7) G has a 5-separation (G1,G2) such that V(G1NG2) = {y2,a1,a2,as3,a4}, Ga is the graph
obtained from the edge-disjoint union of the 8-cycle a1biasboazbsasbsar and the 4-cycle
b1babsbsby by adding yo and the edges yab; for i € [4].

(iv) There exist z1 € V(x1Xy2) — {x1,y2}, 22 € V(22 Xya) — {z2,y2} such that H :== G’ —
(V(X —{y2,21,22}) U E(X)) has disjoint paths Y, Z from yi,z1 to ya, 22, respectively.

Proof. Let K be the graph obtained from G — {z1,x2,y2} by contracting x; Xys — {zi,y2}

to the new vertex w;, for i € [2]. Note that K is 2-connected; since G is 5-connected, X is
induced in G’ — x122, and G — X is 2-connected. We may assume that
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(1) there exists a collection A of subsets of V(K )—{u1, ua, wa, y1 } such that (K, A, ui, y1, uz, wa)
is 3-planar.

For, suppose this is not the case. Then by Lemma K contains disjoint paths, say Y, U,
from y1,u1 to ws,us, respectively. Let v; denote the neighbor of w; in the path U, and let
zi € V(x; Xy2)—{xi,y2} be aneighbor of v; in G. Then Z := (U —{uy, us})+{z1, 22, 2101, 2002 }
is a path between z; and zo. Now Y + {42, yows}, Z are the desired paths for (iv). So we may
assume (1).

Since G — X is 2-connected, |Ng(A) N {ui,u2,w2}| < 1 for all A € A. Let p(K,.A) be
the graph obtained from K by (for each A € A) deleting A and adding new edges joining
every pair of distinct vertices in N (A). Since G is 5-connected and G — X is 2-connected, we
may assume that p(K,.A) — {uy,u2} is a 2-connected plane graph, and for each A € A with
Ni(A) N {uy,uz} # 0 the edge joining vertices of N (A) — {u1,u2} occur on the outer cycle
D of p(K, A) — {u1,u2}. Note that y1,ws € V(D).

Let t; € V(D) with ¢;Dy; minimal such that u;t; € E(p(K,.A)); and let to € V(D) with
y1 Dty minimal such that uste € E(p(K, A)). (So t1,y1,t2, we occur on D in clockwise order.)
Since K is 2-connected and X is induced in G’ —z1 29, there exist z; € V(21 Xy2) —{x1,y2} and
independent paths Ry, R} in G from z; to D and internally disjoint from V(p(K,.A)) UV (X),
such that Ry ends at ¢; and R} ends at some vertex tj # t1, and wa, t},t1,y1 occur on D in
clockwise order. Similarly, there exist zo € V(22X y2) — {z2,y2} and independent paths Ro, R}
in G from 2 to D and internally disjoint from V(p(K,.A)) UV (X), such that Ry ends at o,
R/, ends at some vertex t}, # ta, and y1, to, th, wy occur on D in clockwise order.

We may assume that

(2) K—{u1,us} hasno 2-separation (K’, K”) such that V(K'NK") C V(t1Dts), |V(K')| > 3,
and V(thtl) g V(K”).

For, suppose such a separation (K’, K”) does exist in K — {u1,u2}. Then by the definition of
u1,ug, we see that G has a separation (G, G2) such that V(G1NG2) = V(K'NK")U{x1, 22, y2},
K' CV(Gy) and K" U X C Go. Note that G[{x1,z2,y2}] is a triangle in G, |V (G2)| > 7, and
[V(G1)| > 6 (as [V(K')| > 3). If [V(G1)| > 7 then by Lemma [2.4] (i) or (ii) or (iii) holds.
(Note that if (iv) of Lemma 2.4 holds then G’ has a T K5; so (i) holds.) So assume |V (G1)| = 6,
and let v € V(G1 — G2). Since G is 5-connected, N(v) = V(G NG2). In particular, v # y; as
y1y2 ¢ E(G). Then G[{v, z1,x2,y1}] contains K, and (4i) holds. So we may assume (2).

Next we may assume that

(3) each neighbor of x; is contained in V(X), or V(¢;1Dy;), or some A € A with u; €
Nk (A), and each neighbor of xy is contained V(X), or V(y; Dty), or some A € A with
U € NK(A)

For, otherwise, we may assume by symmetry that there exists a € N(x1) — V(X) such that
a ¢ V(t1Dy) and a ¢ A for A € A with u; € Ng(A). Let o/ =aand S =a if a ¢ A for all
A € A. When a € A for some A € A then by (2), there exists a’ € Ng(A) — V(t1Dt2) and
let S be a path in G[A + d/] from a to @’. By (2) again, there is a path T' from a’ to some
u € V(taDty)—{t1,ta} in p(K, A)—{u1, uz,y2} —t1 Dta. Then t1 Dt UR1URy and RyUt, DulUT
give independent paths T, T», T3 in G— (X —{z1, 22}) with 71, T, from y; to 21, 22, respectively,
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and T3 from @’ to zo. Hence, 2o X w9Uzo X yo UTHU(T5USUax)U(T1 Uz X y2 ) UG[{x1, 22, Y1, Y2 ]
is a TK5 in G’ with branch vertices 1, z2,y1, Y2, 22; so (i) holds.

Label the vertices of wo Dy; and x1 Xyo such that weDy; = vy ... v and 21 Xy2 = vga1 ... Up,
with v = we, vy = Y1, Vg1 = 21 and v, = y2. Let G; denote the union of z;Xys,
{v1,..., vk}, GIAU(Ng(A) —uq)] for A € A with u; € Ni(A), all edges of G’ from x4 Xys to
{v1,...,ux}, and all edges of G’ from x1 Xy, to A for A € A with u; € Ng(A). Note that G4
is (4,{v1,...,v,})-connected. Similarly, let y;Dws = 21 ...z and 29Xys = 2141 - .. 2m, With
21 = wWa, 21 = Y1, 2141 = X2 and 2, = ya. Let Go denote the union of ysXxo, {z1,..., 2},
G[AU(Nk(A)—ug)] for A € Awithug € Ng(A), all edges of G’ from ya X x5 to {z1,..., 2}, and
all edges of G’ from yo Xz to A for A € A with ug € Ng(A). Note that Go is (4,{z1,...,2m})-
connected.

If both (G1,v1,...,v,) and (Ga, 21, ..., zm) are planar then G — yo is planar; so (i) or (i)
or (i7i) holds by Lemma Hence, we may assume by symmetry that (G1,v1,...,v,) is not
planar. Then by Lemma there exist 1 < g < r < s < t < n such that G; has disjoint
paths Q1, Q2 from vy, v, to v, vy, respectively, and internally disjoint from {vy,...,v,}.

Since (K, uq,y1,us,ws) is 3-planar, it follows from the definition of G that ¢,r < k and
s,t > k+1. Note that the paths y; Dts, t5Dvy, v, Dy; give rise to independent paths Py, P, P3
in K — {uj,us}, with P; from y; to ta, P from t}, to vy, and Ps from v, to y;. Therefore,
20X o U 29 Xy U (R2 U Pl) U (R/2 UPUuQ@U USX:I,‘l) U (P3 UQ@s U Uthg) U G[{:cl,azg,yl, yg}]
is a TK5 in G’ with branch vertices x1, 22, y1, Y2, 22. So (i) holds. |

Conclusion (iv) of Lemma motivates the concept of 11-tuple. We say that (G, X, z1, x2,
Y1, Y2, W1, Wa, W3, 21, 22) is an 11-tuple if

o (G, X,x1,x2,Y1,Y2, w1, ws,ws) is a 9-tuple, and z; € V(x; Xy2) — {z;,y2} for ¢ € [2],

o H:=G —(V(X —{y2,21,22}) UE(X)) contains disjoint paths Y, Z from y1, 21 to y2, 22,
respectively, and

e subject to the above conditions, z; X z9 is maximal.

Since G is 5-connected and X is induced in G’ — z1x9, each z; (i € [2]) has at least two
neighbors in H — {y2, 21, 22} (which is 2-connected). Note that y, has exactly one neighbor
H — {y2, z1, 22}, namely, wa. So H — ys is 2-connected.

Lemma 4.2 Let (G, X, x1,x2,y1, Y2, w1, w2, w3, 21, 22) be an 11-tuple and Y, Z be disjoint paths
in H:=G — (V(X —{y2,21,22}) UE(X)) from y1,21 to ya, 22, respectively. Then G contains
a TKs in which ys is not a branch vertex, or G' contains TKs, or

(1) fori € [2], H has no path through z;, z3_;,y1,y2 in order (so yi1z; ¢ E(G)), and

(13) there exists i € [2] such that H contains independent paths A, B,C, with A and C' from
z; to y1, and B from ys to z3_;.

Proof. First, suppose, for some i € [2], there is a path P in H from z; to y2 such that
Ziy 23—i, Y1, Y2 occur on P in order. Then z3_; Xx3_;Uz3_; Xya U (23— Pz Uz Xx;)Uz3_;Py; U
y1Py2 UG[{x1,22,y1,y2}] is a T K5 with branch vertices 1, z2, y1, Y2, 23—i. SO we may assume
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that such P does not exist. Hence by the existence of Y, Z in H, we have y121,y122 ¢ E(G),
and () holds.

So from now on we may assume that (¢) holds. For each i € [2], let H; denote the graph
obtained from H by duplicating z; and y;, and let 2] and y} denote the duplicates of z; and
y1, respectively. So in H;, y; and y| are not adjacent, and have the same set of neighbors,
namely Ny (y1); and the same holds for z; and z..

First, suppose for some i € [2], H; contains pairwise disjoint paths A, B', C’ from {z;, 2, y2}
to {y1,v1, z3—i}, with z; € V(A'), 2 € V(C') and yo € V(B'). If 23_; ¢ V(B’), then after
identifying y; with y] and z; with z, we obtain from A’ U B’ U C" a path in H from z3_; to
yo through z;,y1 in order, contradicting our assumption that () holds. Hence z3_; € V(B').
Then we get the desired paths for (i) from A’ U B’ UC’ by identifying y; with y| and z; with

So we may assume that for each i € [2], H; does not contain three pairwise disjoint paths
from {ya, zi, 2/} to {y1, Y}, z3—i }. Then H; has a separation (H}, H!') such that |V (H!NH)| = 2,
{y2,2i, 2} € V(H;) and {y1, 91, 23—} C V(H]).

We claim that y1, y2, v}, 25, 21, 22 ¢ V(H/NH/) for i € [2]. Note that {y1,v}} # V(H/NH]),
since otherwise y; would be a cut vertex in H separating z3_; from {ys, z;}. Now suppose one
of y1,9} isin V(H/NH"); then since y1, y} are duplicates, the vertex in V(H/NH) —{y1,y;} is
a cut vertex in H separating {y1, 23—} from {y2, 2;}, a contradiction. So y1,y; ¢ V(H;NH]).
Similar argument shows that z;, z, ¢ V(H/NH]"). Since H —ys is 2-connected, yo ¢ V(H;NH/).
Since H — {z3_;,y2} is 2-connected, z3_; ¢ V(H/ N H').

For i € [2], let V(H! N H]') = {s;,t;}, and let F (respectively, F}") be obtained from
H! (respectively, H!') by identifying z] with z; (respectively, y; with y1). Then (F/, F/) is a
2-separation in H such that V(F/NF") = {s;,t;}, {y2, 2} C V(F!) —{si, t:i}, and {y1,23-;} C
V(E!) — {si,ti}. Let Z1,Ys denote the {si,t;}-bridges of F| containing z1,y2, respectively;
and let Z5,Y] denote the {s1,t; }-bridges of F}’ containing z9, y1, respectively.

We may assume Y] = Z5 or Yo = Z;. For, suppose Y1 # Z5 and Y # Z;. Since H — g is
2-connected, there exist independent P;, ()1 in Z; from z; to s1,t1, respectively, independent
paths P, Q2 in Zy from zo to si,tq, respectively, independent paths P3, Q3 in Y7 from y; to
s1,t1, respectively, and a path S in Y5 from y, to one of {s1,t1} and avoiding the other, say
avoiding t1. Then z1 Xz U 21 Xys Uy UPLUS U (Pg U y1l’1) U (QQ U Ql) U Py U 20Xy U
(20X @9 Uxaxy) is a TK5 in G’ with branch vertices s1, 21, y2, 21, 22

Indeed, Y7 = Z,. For, if Y] # Z5 then Y5 = Z1, Yo — {s1,t1} has a path from ys to 2z, and
Y1 U Z5 has two independent paths from y; to z2 (since H — yo is 2-connected). Now these
three paths contradict the existence of the cut {s9,t2} in H.

Then {s2,t2} NV (Y1 — {s1,t1}) # 0. Without loss of generality, we may assume that to €
V(Y1) — {s1,t1}. Suppose Yo = Z;. Then s9 € V(Y2) — {51, 1} and we may assume that in H,
{s2,t2} separates {s1,y1, 21} from {t1,y2, 22}. Hence, in Y7, t2 separates {y1, s1} from {z2,%1},
and in Y3, so separates {z1,s1} from {y2,%;}. But this contradicts the existence of the paths
Y and Z in H. So Ys # Z;. Since H — yy is 2-connected and Ngr(y2) = {w, wa, w3, x1, 2},
we must have sy = wy € {s1,t1}. By symmetry, we may assume that s; = wy = s;.

Let Y/, Z), be the {sa, t2}-bridge of Y7 containing y1, 22, respectively. Then t; ¢ V(Z}); for,
otherwise, H —{sa,t2} would contain a path from 25 to z1, a contradiction. Therefore, because
of the paths Y and Z, t; € V(Y{) and Y{ contains disjoint paths Ry, Rs from sy = s1,t1 to y1, te,
respectively. Since H — g9 is 2-connected, Z; has independent P;, Q1 from z; to so = s1,1t1,
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respectively, and Z) has independent paths P, Q2 from zs to s = s1,to, respectively. Now
21 Xx1Uz1 Xyo Uyoxy U PpUs ys U (Rl U y1£l71) UPU (Q2 URyU Ql) Uzo Xya U (ZQX.TQ U $2£C1)
is a TK5 in G’ with branch vertices sy, x1, y2, 21, 22. |

Lemma 4.3 Let (G, X, x1,x2,y1, Y2, w1, w2, ws, 21, 22) be an 11-tuple and Y, Z be disjoint paths
in H:=G — V(X —{ya, 21,20} UE(X)) from y1,21 to ya, 22, respectively. Then G contains
a TKs in which yo is not a branch vertex or G' contains TKs, or

(1) there exist i € [2] and independent paths A, B,C in H, with A and C' from z; to y1, and
B from ys to z3_,,

(i7) for each i € [2] satisfying (i), z3—ix3—; € E(X), and

(tit) H contains two disjoint paths from V(B — y2) to V(AU C) — {y1,zi} and internally
disjoint from AU B U C, with one ending in A and the other ending in C'.

Proof. By Lemma we may assume that
(1) for each i € [2], H has no path through z;, z3_;,y1,y2 in order (so y12; ¢ E(G)), and

(2) there exist ¢ € [2] and independent paths A, B,C in H, with A and C from z; to y1, and
B from g9 to z3_;.

Let J(A,C) denote the (AU C)-bridge of H containing B, and L(A,C) denote the union
of (AUC)-bridges of H each of which intersects both A —{y1, z;} and C' —{y1, z;}. We choose
A, B, C such that the following are satisfied in the order listed:

(a
(b) whenever possible, J(A,C) C L(A,C),

A, B, C are induced paths in H,

)
)

(c) J(A,C) is maximal, and
)

(d

We now show that (i) and (#i7) hold even with the restrictions (a), (b), (c) and (d) above.
Let B’ denote the union of B and the B-bridges of H not containing AU C.

L(A,C) is maximal.

(3) If (4i7) holds then (éi) holds.

Suppose (ii7) holds. Let V(PNB) = {p}, V(QNB) = {q}, V(PNC) = {c} and V(QNA) = {a}.
By the symmetry between A and C, we may assume that yo,p,q, z3_; occur on B in order.
We may further choose P, ) so that pBz3_; is maximal.

To prove (i7), suppose there exists © € V (z3_; Xw3_;)—{x3—i, z3—i}. I N(x)N"V(H)—{y1} £
V(B') then G’ has a path T from x to (A — 1) U (C —y1) U (P —p) U(Q — a) and internally
disjoint from AUB'UCUPUQ; so AUBUC UPUQUT contain disjoint paths from
Y1, Zi to Y2, x, respectively, contradicting the choice of Y and Z in the 11-tuple (that z; X z5 is
maximal). So N(z) NV (H) — {y1} C V(B'). Consider B” := G[(B" — z3_;) + z].
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If B” contains disjoint paths P’, Q' from 9, x to p, q, respectively, then Q' UQ U aAz; and
P'U P UcCy; contradict the choice of Y, Z. If B” contains disjoint paths P”, Q" from z,ys to
p, q, Tespectively, then Q" U Q U aAy, and P” U P U cCz; contradict the choice of Y, Z.

So we may assume that there is a cut vertex z in B” separating {x,y} from {p, ¢}. Note
that z € V(y2Bp).

Since x has at least two neighbors in B” — yo (because G is 5-connected and X is induced
in G’ —x122), the z-bridge of B” containing {x,y>} has at least three vertices. Therefore, from
the maximality of pBzs—; and 2-connectedness of H — {y2, 21, 22}, there is a path in H from
y1 to yo Bz — {y2, 2} and internally disjoint from PUQ U AUC U B’. So there is a path Y’ in
H from y; to yo and disjoint from PUQ U AUC UpBzs_;. Now 23 ;BpUPUcCz UAUY’
is a path in H through z3_;, z;, y1, y2 in order, contradicting (1).

By (2) and (3), it suffices to prove (iii). Since H — {ya,2;} is 2-connected, it contains
disjoint paths P, from B — ya to some distinct vertices s,t € V(AU C) — {z;}, respectively,
and internally disjoint from AU B U C.

(4) We may choose P, so that s # y; and t # y;.

For, otherwise, H — {y2, z;} has a separation (H;, Hs) such that V(H; N Ha) = {v,y1} for
some v € V(H), (AUC) — z; C Hy and B — y2 C Hy. Recall the disjoint paths Y, Z in H
from z1,y1 to z2,y2, respectively. Suppose v ¢ V(Z). Then Z — z; C Hy — {y1,v}. Hence we
may choose Y (by modifying Y N H;) so that V(Y N A) = {y1} or V(Y NC) = {y1}. Now
ZUAUY or ZUCUY is a path in H from z3_; to yo through z;,y; in order, contradicting
(1). Sov € V(Z). Hence Y C Hy — v, and we may choose Z (by modifying Z N Hy) so that
V(ZNA)={z}or V(ZNC)={z}. Now ZUAUY or ZUCUY is a path in H from z3_;
to yo through z;,y; in order, contradicting (1) and completing the proof of (4).

IfseV((A—y)andt € V(C —y;)or s € V(C —y1) and t € V(A —y;), then P,Q are the
desired paths for (i7i). So we may assume by symmetry that s,¢ € V(C). Let V(PN B) = {p}
and V(Q N B) = {q} such that y2,p, q, 23—; occur on B in this order. By (1) z;,s,t,y; must
occur on C in order. We choose P, @ so that

(x) sCt is maximal, then pBzs_; is maximal, and then ¢Bz3_; is minimal.

Now consider B’, the union of B and the B-bridges of H not containing AU C. Note that
(P —p) U (Q — q) is disjoint from B’, and every path in H from AU C to B’ and internally
disjoint from A U B’ U C must end in B. For convenience, let K = PUQU AU B UC.

(5) B’ — yo contains independent paths P’, Q' from z3_; to p, ¢, respectively.

Otherwise, B’ —ys has a cut vertex z separating z3_; from {p, q}. Clearly, z € V(¢Bz3_;—23—;),
and we choose z so that zBz3_; is minimal.

Let B” denote the z-bridge of B’ —y, containing z3_;; then zBz3_; C B”. Since H—{ys2, 2;}
is 2-connected, it contains a path W from some w’ € V(B"” — z) to some w € V(PUQ U AU
C) — {2;} and internally disjoint from K. By the definition of B’, w’ € V(2;Bz3—;). By (1),
w & V(P)UV (2,0t —t). By (x), w ¢ V(Q)UV(tCy1 — y1).

If we V(A) — {z,y1} then P,W give the desired paths for (i7i). So we may assume
w = yp for any choice of W; hence, z € V(Z) and Y N (B”" U (W — 1)) = 0. By the
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minimality of zBz3_;, B” has independent paths P”, Q" from z3_; to z,w’, respectively. Note
that 2;Z2N(B" —2) = 0. Now 2, ZzUP"UQ"UW UY is a path in H through z;, 23_;,y1, Y2
in order, contradicting (1).

(6) We may assume that J(A,C) € L(A,C).

For, otherwise, there is a path R from B to some r € V(A) — {y1, z;} and internally disjoint
from AUB'UC. If RN (PUQ) # 0, then it is easy to check that P U Q U R contains the
desired paths for (iii). So we may assume RN (PUQ) = (. If yo ¢ V(R), then P, R are
the desired paths for (i7i). So assume y, € V(R). Recall the paths P', Q" from (5). Then
2CsUPUP UQ UQUtCy; Uy Ar U R is a path in H through 2;,23_;,41,¥y2 in order,
contradicting (1) and completing the proof of (6).

Let J = J(A,C)UC. Then by (1), J does not contain disjoint paths from ys, z; to y1, 23_;,
respectively. So by Lemma there exists a collection A of subsets of V(J) — {y1,y2, 21, 22}
such that (J, A, zi, y1, 23—i, y2) is 3-planar. We choose A so that every member of A is minimal
and, subject to this, |A| is minimum. Then

(7) for any D € A and any v € V(D), (J[D + Nj(D)], N;y(D) U {v}) is not 3-planar.

Suppose for some D € A and some v € D, there is a collection of subsets A" of D — {v}
such that (J[D + N;(D)], A’, N;(D) U {v}) is 3-planar. Then, with A” = (A — {D})U A,
(J, A", zi,y1, 23—, y2) is 3-planar. So A" contradicts the choice of A. Hence, we have (7).

Let v1,..., v be the vertices of L(A,C) N (C — {y1,2}) such that z;,v1,..., v, y1 occur
on C in the order listed. We claim that

(8) (J; zi,v1,. .., Uk, Y1, 234, Y2) is 3-planar.

For, suppose otherwise. Since there is only one C-bridge in J and (J, A, z;,y1, 23—, y2) is
3-planar, there exist j € [k] and D € A such that v; € D. Since H is 2-connected, let
c1,¢2 € V(C)N Ny(D) with ¢;Cc maximal.

Suppose Nj(D) C V(C). Then, since there is only one C-bridge in J and (J, A, z;, y1, 23—, Y2)
is 3-planar, J has a separation (Ji, J2) such that V(J1NJ2) = {c1,c2}, DUV (c1Cc2) C V (1),
and B C Js. Since J has only one C-bridge and C' is induced in H, we have J; = ¢1Ccs.
Now let A’ be obtained from A by removing all members of A contained in V(J;). Then
(J, A, zi, 41, 23—, y2) is 3-planar, contradicting the choice of A.

Thus, let ¢ € Ny(D) — V(C). So ¢ € V(J(A,C)). Let D' = J[D + {c1,c2,c}]. By (7)
and Lemma D' contains disjoint paths R from v; to ¢ and T from ¢; to co. We may
assume 7T is induced. Let C’ be obtained from C by replacing ¢;Cco with T. We now see that
A, B, " satisty (a), but J(A, C") intersects both A — {y1,2;} (by definition of v; and because
ceV(J(AC)) —V(C)) and C" — {y1,zi} (because of P,Q), contradicting (b) (via (6)) and
completing the proof of (8).

(9) There exist disjoint paths R, Ry in L(A,C) from some ry,r2 € V(C) to some 11,75 €

V(A), respectively, and internally disjoint from AU C, such that z;,r1,72,y1 occur on C
in this order and z;,r%, 7}, y1 occur on A in this order.
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We prove (9) by studying the (AUC)-bridges of H other than J(A, C). For any (AUC)-bridge
T of H with T # J(A,C), if T intersects A let a1(T),a2(T) € V(T N A) with a1(T)Aas(T)
maximal, and if T intersects C let ¢1(T"),co(T) € V(T N C) with ¢1(T)Ceco(T) maximal. We
choose the notation so that z;,a;(T"),a2(T),y; occur on A in order, and z;,c1(T),c2(T), 11
occur on C in order.

If 11, T, are (AU C)-bridges of H such that 7o C L(A,C), T1 # J(A,C), and T intersects
C (OI‘ A) only, then Cl(Tl)CCQ(TI) — {Cl(Tl),CQ(TI)} (OI‘ al(Tl)Aag(Tl) — {al(Tl),aQ(Tl)})
does not intersect T5. For, otherwise, we may modify C' (or A) by replacing c¢1(77)Ce2(T1) (or
a1(T1)Aaz(T1)) with an induced path in 77 from ¢;(T1) to c2(T1) (or from a;(T1) to az(T1)).
The new A and C do not affect (a), (b) and (c) but enlarge L(A, C), contradicting (d).

Because of the disjoint paths Y and Z in H, (H, z;,y1, 23—, y2) is not 3-planar. By (1)
A —{y1,2} # 0. Hence, since H — {y2, 21,22} is 2-connected, L(A,C) # (. Thus, since
(J, zi,v1, ..., Uk, Y1, 23—, Y2) is 3-planar (by (8)) and J(A,C) does not intersect A — {y1, 2}
(by (6)), one of the following holds: There exist (AUC)-bridges 11, T> of H such that Ty UT, C
L(A,C), z;jAaz(T1) properly contains z;Aaj(T»), and ¢1(71)Cy; properly contains co(72)Cys;
or there exists an (A U C)-bridge T of H such that 7' C L(A,C) and T U a1(T)Aaz(T) U
c1(T)Ceco(T) has disjoint paths from a1(7"), a2(T) to ca(T"), c1(T), respectively. In either case,
we have (9).

(10) ri,7mo € V(tCyp) for all choices of Ry, Re in (9), or ri,r9 € V(2,Cs) for all choices of
Ri, Ry in (9).

For, suppose there exist Ry, Ry such that r1 € V(z,Cs) and ry € V(tCy1), or 1 € V(sCt) —
{s,t}, or ro € V(sCt) —{s,t}. Let A" := z; Arb U RaUrsCy; and C" := z;Cr1 URy U] Ay;. We
may assume A’, C’ are induced paths in H (by taking induced paths in H[A’] and H[C']). Note
that A’ B,C’ satisfy (a), and J(A,C) C J(A',C"). However, because of P and Q, J(A',C")
intersects both A" — {z;, 11} and C" — {z;,y1}, contradicting (b) (via (6)) and completing the
proof of (10).

If 1,79 € V(2;Cs) for all choices of Ry, Ry in (9) then we choose such Ry, Ry that z; Ar}
and z;Cro are maximal, and let 2’ := 7| and 2 = ry; otherwise, define 2’ = 2" = z;. Similarly,
if 1,79 € V(tCyy) for all choices of Ri, Ry in (9), then we choose such Ri, Ry that y; Arf, and
y1Cry are maximal, and let 3 := r} and y” = r1; otherwise, define v/ = 3" = 3. By (10),
2, 2",y ,y1 occur on A in order, and z;, 2", s,t,3”,y1 occur on C in order.

Note that H has a path W from some y € V(B)UV (P—s)UV (Q—t) to some w € V(z;Az' —
{2/, 2 UV (2,C2"—{2", z; })UV (Y Ay1 —{v/, 11 } ) UV (v Cy1 —{y”, y1 }) such that W is internally
disjoint from K. For, otherwise, (H, z;, y1, 23—, y2) is 3-planar, contradicting the existence of
the disjoint paths Y and Z. By (6), w ¢ V(A). f w € V(2,42 — {2,z ) UV (¥ Ay1 — {¥', 11 })
then we can find the desired P, Q. So assume w € V(z;Cz" — {2",z;}) UV (y"Cy1 — {y",y1}).
By (%) and (1), y ¢ V(B —y2) and y ¢ V(P U Q). This forces y = y2, which is impossible as
Nu(y2) = {ws}. I

Remark. Note from the proof of Lemma that the conclusions (i) and (¢i¢) hold for
those paths A, B, C that satisfy (a), (b), (c) and (d).
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w3

Figure 1: An intermediate structure

5 Finding T'Kj;

In this section, we prove Theorem [I.Il Let G be a 5-connected nonplanar graph and let
x1,22,Y1,y2 € V(G) be distinct such that G[{z1,z2,y1,92}] = K, and y1y2 ¢ E(G). Let
wi,we, w3 € N(y2) — {x1, 22} be distinct and let G’ := G — {y2v : v & {w1, we, w3, x1, T2} }.

We may assume that G’ — x1x2 has an induced path L from z7 to zy such that yi,ys ¢
V(L), (G — y2) — L is 2-connected, and wy,ws, w3 € V(L); for otherwise, the conclusion of
Theorem follows from Lemma, Hence, G’ — z129 has an induced path X from z; to
x9 such that y; ¢ V(X), wiye, wsys € E(X), and G' — X = G — X is 2-connected. Hence,
(G, X, x1,x2,Y1, Y2, w1, w2, ws3) is a 9-tuple.

We may assume that there exist z; € V(z;Xy2) — {x;,y2} for ¢ € [2] such that H :=
G’ — (X —{y2, 21, 22}) has disjoint paths Y, Z from y1, 21 to ya, 22, respectively; for, otherwise,
the conclusion of Theorem follows from Lemma We choose such Y, Z so that z1 X z9 is
maximal. Then (G, X, x1, x2,y1, Y2, w1, w2, w3, 21, 22) is an 11-tuple.

By Lemma and by symmetry, we may assume that

(1) for i € [2], H has no path through z;, z3_;, y1, y2 in order (so y12; ¢ E(G)),

and that there exist independent paths A, B, C' in H with A and C from z; to y;, and B from
Y2 to z2. See Figure[l]

Let J(A, C) denote the (AUC)-bridge of H containing B, and L(A, C') denote the union of
(AU C)-bridges of H intersecting both A — {y1,21} and C — {y1,21}. We may choose 4, B,C
such that the following are satisfied in the order listed:

(a) A, B,C are induced paths in H,
(b) whenever possible J(A,C) C L(A,C),
(c)

)

d

J(A,C) is maximal, and

L(A,C) is maximal.
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By Lemma and its proof (see the remark at the end of Section 4), we may assume that
zox9 € K (X )

and that there exist disjoint paths P,Q in H from p,q € V(B —y3) to c € V(C) —{y1,21},a €
V(A) — {y1, 21}, respectively, and internally disjoint from AU B U C. By symmetry between
A and C, we assume that yo,p, ¢, 2o occur on B in order. We further choose A, B,C, P,(Q so
that

(2) ¢Bzy is minimal, then pBzy is maximal, and then aAy; U cCz; is minimal.

Let B’ denote the union of B and the B-bridges of H not containing A U C. Note that
all paths in H from AU C to B’ and internally disjoint from B’ must have an end in B. For
convenience, let

K:=AuB UCUPUQ.

Then
(3) H has no path from aAy; — a to z1Cc — ¢ and internally disjoint from K.

For, suppose S is a path in H from some vertex s € V(aAy; —a) to some vertex s’ € V(z1Cc—c)
and internally disjoint from K. Then z3BqU QU aAz U zCs' US U sAy; Uy1CcU P U pBys
is a path in H through 29, 21, y1, y2 in order, contradicting (1).

We proceed by proving a number of claims from which Theorem will follow. Our
intermediate goal is to prove (12) that H contains a path from y; to @ — a and internally
disjoint from K. However, the claims leading to (12) will also be useful when we later consider
structure of G near z;.

(4) B’ —ys has no cut vertex contained in ¢Bz — 2z and, hence, for any ¢* € V(B') —{y2, ¢},
B’ — y5 has independent paths Py, P, from 2o to g, ¢*, respectively.

Suppose B’ — y, contains a cut vertex u with u € V(¢Bzy — 22). Choose u so that uBzy is
minimal. Since H — {y2, 21} is 2-connected, there is a path S in H from some s’ € V(uBzs —u)
to some s € V(AUCUPUQ) — {p,q} and internally disjoint from K. By the minimality of
uBzo, the u-bridge of B’ — y5 containing uBzs has independent paths Ry, Ry from zy to s, u,
respectively. By the minimality of ¢Bzs in (2), S is disjoint from (PUQ U AUC) — {z1,y1}.
If s = z; then (R;US)U AU (y1CcU P UpBys9) is a path in H through 29, 21,91, y2 in order,
contradicting (1). So s = y1. Then (21AaUQ U gBuU Re) U (R U S) U (y1CcU P U pBys) is
a path in H through zi, z2,y1,y2 in order, contradicting (1).

Hence, B’ — y has no cut vertex contained in ¢Bzo — z3. Thus, the second half of (4)
follows from Menger’s theorem.

(5) We may assume that G’ has no path from aAy; —a to z1 X 23 and internally disjoint from
K U X, and no path from ¢Cy; — ¢ to 21 X290 — 21 and internally disjoint from K U X.
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For, suppose S is a path in G’ from some s € V(aAy; —a) UV (cCyy —c¢) to some 8" € V(21X 23)
and internally disjoint from K U X, such that s # z; if s € V(cCy; —¢). If s = 21 then s €
V(aAy1—a); so 22 BqUQUa Az USUs Ay, Uy CcUPUpBys9 is a path in H through 29, 21, y1, y2 in
order, contradicting (1). If s = z5 then s = y; by (2); so (21 AaUQUqBz2)USUy, CcUPUpBys
is a path in H through 21, 22, y1, y2 in order, contradicting (1). Hence, s € V(21X 29)—{z1, 22}.

Suppose s € V(21 Xys —z1). Let Py, Py be the paths in (4) with ¢* = p. If s € V(aAy1 —a)
then zowo U 20Xys U (P, U P U cCyy) U (PLUQU aAz U2 Xx1) U (y1As U S U s’ Xyo) U
G[{z1,22,y1,y2}] is a TK5 in G’ with branch vertices x1, 22, y1, Y2, 22. If s € V(cAy; —c) then
2009 U2o X ya U(PoUPUcC2z Uz X21)U(PLUQUaAy: )U(y1CsUSUS Xyo)UG[{x1, 22, y1, Y2}
is a TK5 in G’ with branch vertices x1, x2, y1, Y2, 22.

Now assume s' € V(20X ys — 22). If s € V(aAy; — a), then 21 Xz U 21 Xy, UC U (214a U
QU qBzyUzoz9) U (y1 AsUSUS' Xyo) UG[{x1, 22,91, y2}] is a TK5 in G’ with branch vertices
1,%2,Y1,Y2,21. 1If s € V(cCy; — ¢), then 21Xz U 21 Xys U AU (21CcU P U pBzo U z9x9) U
(y1Cs U S U ' Xyo) UG{x1,22,y1,y2}] is a TK5 in G’ with branch vertices z1, z2, y1,y2, 21.
This completes the proof of (5).

Denote by L(A) (respectively, L(C')) the union of (AU C)-bridges of H not intersecting C
(respectively, A). Let C' = C U L(C). The next four claims concern paths from x; X z; — z; to
other parts of G'. We may assume that

(6) N(z1Xz1 —A{x1,21}) CV(C")U{x1, 21}, and that G’ has no disjoint paths from si, s €
V(x1Xz1 — 2z1) to s, s5 € V(C), respectively, and internally disjoint from K U X such
that s, € V(cCyr — ¢), x1, 81, S2, 21 occur on X in order, and z1, 87, sh, y1 occur on C in
order.

First, suppose N(z1Xz1 —{z1,21}) € V(C")U{x1,21}. Then there exists a path S in G’ from
some s € V(21X z1) —{x1, 21} to some s € V(AUB'UPUQ) —{c,y1, y2, 21, 22} and internally
disjoint from KU X. If s’ € V(A) — {21,y1} then y1Cc U P UpBys, SU s Aa U Q U gBzo
contradict the choice of Y, Z. If & € V(Q — a) then y1Cc U P U pBys, S U s'Qq U qBz
contradict the choice of Y, Z. If s € V(P — ¢) then let Py, P» be the paths in (4) with ¢* = p;
now zoxo U290 Xya U(PLUQUaAy;)U(PoUpPs'USUsXx)U(CUz1 Xy2) UG{x1, 22,1, Y2 }]
is a TK5 in G’ with branch vertices x1, T2, Y1, y2, 22. If s € V(B’') — {y2,p,q} then let P;, P,
be the paths in (4) with ¢* = s’; now 2929 U 20 Xy2 U (PLUQUaAy;) U (P,USUsXz)U(CU
21Xy2) UG{x1,x2,91,y2}] is a TK5 in G’ with branch vertices x1, z2,y1, Y2, 22.

Now assume G’ has disjoint paths S1, Sy from s1,s2 € V(21 X21 — 21) to s,s, € V(O),
respectively, and internally disjoint from K UX such that s}, € V(cCy1 —c¢), x1, s1, s2, 21 occur
on X in order, and 21, s}, $5,y1 occur on C' in order. Let Py, Py be the paths in (4) with ¢* = p.
Then zowa U 22 Xyo U (PLUQUaAy;) U(P,UPUcCs)US1Usi X)) U (y1CshU Sy UsaXya)U
G[{z1,22,y1,y2}] is a TK5 in G’ with branch vertices 1, x2,y1,y2, 22. This completes the
proof of (6).

(7) For any path W in G’ from z; to some w € V(K) — {y1, 21} and internally disjoint from
K U X, we may assume w € V(AUC) — {y1,21}. (Note that such W exists as G is
5-connected and G’ — X is 2-connected.)

For, let W be a path in G’ from 21 to w € V(K) —{y1, 21} and internally disjoint from K UX,
such that w ¢ V(AU C) — {z1,y1}. Then w # ys as Ng(y2) = {w1, w2, ws, 1, x2}.
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Suppose w € V (B’ — q). Let Pj, P> be the paths in (4) with ¢* = w. Then z9x9 U 20 Xy U
(PLUQUaAy;) U (P, UW)U (CU 2 Xy9) UG[{x1,22,y1,y2}] is a TK5 in G’ with branch
vertices x1, X2, Y1, Y2, 22.

So assume w ¢ V(B' — q). Let Pi, P, be the paths in (4) with ¢* =p. If w € V(P — ¢)
then zoxo U2zoXys U (PLUQUaAy;) U (PoUpPwUW)U(CUz1 Xy2) UG[{z1,y1,22,y2}] is a
TKj5 in G' with branch vertices x1, z2,y1, Y2, 22. If w € V(Q — a) then zox9 U 20 Xys U (P U
qQw UW)U (Po UPUcCy;) U (AU 21 Xy2) UG[{x1,22,y1,y2}] is a TK5 in G’ with branch
vertices x1, 2, Y1, Y2, 22. This completes the proof of (7).

(8) We may assume that G’ has no path from 21X z; — z1 to y; and internally disjoint from
KuUX.

For, suppose that R is a path in G’ from some x € V(21X z; — 1) to y; and internally disjoint
from K U X. Then z # z1; as otherwise zo BqU Q U aAz; URUyCecU P U pBys is a path in
H through 29, 21, y1, y2 in order, contradicting (1). Let Pi, P, be the paths in (4) with ¢* = p.
We use W from (7). If w € V(A) —{z1,y1} then 200Uz Xy U(PLUQUaAwUW)U(PUPU
cCy1) U (RUxXy9) UG[{x1,22,11,y2}] is a TK5 in G’ with branch vertices x1,x2, y1, Y2, 22.
If we V(C)—{z1,y1} then z9x9 U 20Xy U (PLUQ UaAy,) U (P,UPUcCwUW)U(RU
X y2)UG[{x1, 22,91, y2}] is a TK5 in G’ with branch vertices x1, 2, y1, y2, z2. This completes
the proof of (8).

(9) If G’ has a path from x1 Xz — {x1, 21} to cCy; — ¢ and internally disjoint from K U X,
then we may assume that

o we V(C)—{y1, 2} for any choice of W in (7), and
e G’ has no path from x5 to C' — {y1, 21} and internally disjoint from K U X.

Let S be a path in G’ from some s € V(21X z1) —{x1, 21} to V(cCy1 —¢) and internally disjoint
from K U X. Since X is induced in G' — z1x9, G'[H — {y2, 21, 22} + s] is 2-connected. Hence,
since N(x1Xz1 — {x1,21}) CV(C")U{x1,21} (by (6)), G’ has independent paths S7, Se from
s to distinct s1,s2 € V(C) — {z1,y1} and internally disjoint from K U X. Because of S, we
may assume that z1, s1, s2, %1 occur on C' in this order and sy € V(cCy; — ¢).

Suppose we may choose the W in (7) with w € V(A) — {z1,y1}. Let Pi, Py be the paths
in (4) with ¢* = p. Then zomwo U 20 X yo U sXx1 UsXys U (PQ UPUeCsy U Sl) U (52 UseCyp U
y122)U(PLUQUaAwUW)UG[{z1, 2, y2}] is a TK5 in G’ with branch vertices s, x1, z2, y2, 22.

Now assume that S’ is a path in G’ from x5 to some s’ € V(C) — {y1, 21} and internally
disjoint from K UX. Then S;US;US"U(C — z1) contains independent paths S, S5 which are
from s to y1,x2, respectively (when s’ € V(21Csy) — {s2,21}), or from s to ¢, xq, respectively
(when s" € V(s2Cy1 —y1)). If S, S% end at yi, za, respectively, then sXz1 UsXys US| USHU
(y1AaU QU qBys) U G[{x1,z2,y1,y2}] is a TK5 in G’ with branch vertices s, x1, 22, y1,y2. So
assume that S7, S} end at ¢, x9, respectively. Let Py, P, be the paths in (4) with ¢* = p. Then
sXx1UsXyoUzoxg U2zoXyo U (S]UPUP)US,U(PLUQUaAy; Uyiar) UG[{x1, z2,y2}] is
a TK5 in G’ with branch vertices s, x1, Z2,y2, 22. This completes the proof of (9).

The next two claims deal with L(A) and L(C'). First, we may assume that

(10) L(A)N A C z Aa.
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For any (A U C)-bridge R of H contained in L(A), let z(R),y(R) € V(RN A) such that
z(R)Ay(R) is maximal. Suppose for some (AU C)-bridge R; of H contained in L(A), we have
y(R1)Az(R1) € z1Aa. Let Ry, ..., Ry, be amaximal sequence of (AUC')-bridges of H contained
in L(A), such that for each 7 € {2,...,m}, R; contains an internal vertex of U;;ll z2(R;)Ay(R;)
(which is a path). Let a1,a2 € V(A) such that 7L, 2(R;)Ay(R;) = a1Aaz. By (c), J(4,C)
does not intersect ajAas — {aj,as}; so aj,as € V(aAy;). By (d), G’ has no path from
ajAaz — {a1,a2} to C and internally disjoint from K U X. Hence by (5), {a1,a2,z1, 2,92}
is a cut in G. Thus, G has a separation (G, G2) such that V(G N Ge) = {a1,ag,x1,x2,y2},
PUQUB/UCUX C G, and a1 Aag U (UT=1R]> C Gs.

Let z € V(G2) — {a1,a2,21,x2,y2} and assume z1, a1, az,y; occur on A in order. Since G
is 5-connected, G2 — yo contains four independent paths Ri, Re, R3, R4 from z to x1,xs, a1, as,
respectively. Now R; U Re U (R3 U a1Az U 21 Xy2) U (Ry U agAyy) U (y1CcU P U pBys) U
Gl{z1,72,y1,y2}] is a TKs in G’ with branch vertices 1,2, y1,y2,2. This completes the
proof of (10).

(11) We may assume that if R is an (AUC)-bridge of H contained in L(C') and RN(cCy1—c) #
() then |V(R) — V(C)| =1 and N(R — C) = {c1, ¢, 81, 82, Y2}, with ¢;Ccy = ¢1c2 and
§189 = 81X82 g lexl.

For any (AUC)-bridge R in L(C), let 2(R),y(R) € V(CNR) such that z(R)Cy(R) is maximal.
Let Ry be an (AU C)-bridge of H contained in L(C) such that Ry N (¢cCy; — ¢) # 0.

Let Ry,..., R, be a maximal sequence of (A U C)-bridges of H contained in L(C), such
that for each ¢ € {2,...,m}, R; contains an internal vertex of U;;ll z(R;)Cy(R;) (which is
a path). Let c1,c2 € V(C) such that ¢;Cey = L 2(R;)Cy(R;), with z1,¢1,¢2,91 on C in
order. So co € V(cCy1 —y1) and, hence, ¢; € V(cCy1 —y1) by (c) and the existence of P. Let
R = U;nzl Rj Uci1Ces.

By (c), G’ has no path from ¢;Cca — {c1, 2} to V(B'UPUQ)U{z} and internally disjoint
from K U X. By (d), G’ has no path from ¢;Ccs — {c1,c2} to A — {y1,21} and internally
disjoint from K U X.

If N(z2)NV (R —{c1,c2}) # 0 then by (5) and (9), N(R'—{c1, c2}) = {x1, 22,92, c1,c2}. Let
z € V(R') —{x1,x2,c1,c2}. Since G is 5-connected, R’ has independent paths W7y, Wa, W3, Wy
from z to x1, x9, g, c1, respectively. Now Wi U Wy U (W3 U caCy1) U (WU e1Cz U 21 Xya) U
(y1Aa U QU qBy2) U G[{x1,x2,y1,y2}] is a TK5 in G’ with branch vertices 1, x2,y1, Y2, 2.

So we may assume N (z2) NV (R —{c1,c2}) = 0. Since G is 5-connected, it follows from (5)
that there exist distinct s1, 9 € V(21 X21—21)NN (R —{c1,c2}). Choose s1, s9 such that s1X so
is maximal and assume that 1, s1, s2, 21 occur on X in this order. By (6), {c1,c2, s1, 52,92}
is a 5-cut in G; so G has a separation (G1,G2) such that V(G N Ga) = {c1,¢2, 81,52, y2}
and R'Uc¢1Cca U s1Xs9 C Go. By (6) again, (G2 — ya,c1,¢2, 81, $2) is planar (since G is
5-connected). If |V (G2)| > 7 then by Lemma[2.3] (i) or (i) or (iii) holds. So we may assume
that |V (G2)| = 6, and we have the assertion of (11).

We may assume that
(12) H has a path @’ from y; to some ¢’ € V(Q — a) and internally disjoint from K.
First, suppose that y; € V(J(A,C)). Then, H has a path @ from y; to some ¢’ € V(P —
¢) UV(Q — a) U V(B) internally disjoint from K. We may assume ¢’ € V(P — ¢) U V(B);
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for otherwise, ¢ € V(Q — a) and the claim holds. If ¢ € V(P — ¢) U V(y2Bg — q) then
(P —¢) U (y2Bq — q) U Q' contains a path Q" from y; to ya; so 21Xz U221 Xys UC U (21 Aa U
QUqBzU29m9) UQ"UG[{x1, 22,y1,y2}] is a TK5 in G’ with branch vertices x1, x2, y1, Y2, 21-
Hence, we may assume ¢ € V(qBzy — q). Let P;, P, be the paths in (4) with ¢* = ¢/. Then
2o U 20Xyp U (PLUQUaAz Uz X)) U(PaUQ) U (y1CcU P UpByo) UG{x1, 22,91, y2}]
is a TK5 in G’ with branch vertices x1, z2, y1, Y2, 2.

Thus, we may assume that y; ¢ V(J(A,C)). Note that y1 ¢ V(L(A)) (by (10)) and
y1 ¢ V(L(C)) (by (8) and (11)). Hence, since y1y2 ¢ E(G) and G is 5-connected, y; is
contained in some (A U C)-bridge of H, say D1, with D1 C L(A,C) and Dy # J(A,C). Note
that |V(D;)| > 3 as A and C are induced paths. For any (A U C)-bridge D of H with that
D CL(A,C)and D # J(A,C), let a(D) € V(A)NV (D) and ¢(D) € V(C)N V(D) such that
z1Aa(D) and z;Ce(D) are minimal.

Let Dq,..., Dy be a maximal sequence of (A U C)-bridges of H with D; C L(A,C) (so
D; # J(A,Q)) for i € [k], such that, for each i € [k — 1], Dj31 N (AU C) is not contained in
Ui (e(D;)CyrUa(D;) Ayr), and D; 1N (AUC) is not contained in (Yj_; (21Ce(D;)Uz1 Aa(Dy)).
Note that for any i € [k], U;‘:l a(D;)Ay, and U§:1 c(D;)Cy; are paths. So let a; € V(A)
and ¢; € V(C) such that U;‘:l a(D;)Ay1 = a;Ay: and Uj’:1 c(D;j)Cy1 = ¢;Cy1. Let S; =
a;Cy1 Uc;Cyy U (U3:1 Dj)

Next, we claim that for any [ € [k] and for any r; € V(S;) — {a;, ¢} there exist three
independent paths A;, C, Ry in S; from y1 to ay, ¢, 17, respectively. This is clear when | = 1;
note that if a; = y1, or ¢; = y1, or r; = y1 then A;, or Cy, or R; is a trivial path. Now assume
that the assertion is true for some [ € [k — 1]. Let ri41 € V(S;41) — {a1+1, 41} When rj4q €
V(S))—{ay, ¢} let rp := 11 1; otherwise, let r; € V(Dyy1) with ry € V(aj Ay —a))UV (;Cy1—¢p).
By induction hypothesis, there are three independent paths A;, Cj, Ry in S) from w1 to ay, ¢, 7y,
respectively. If 11 € V(S)) —{a;, ¢} then A;4q := AjUaiAai11,Cry1 = CiUCcyq, Ry :=
Ry are the desired paths in Sj1. If 11 € V(Djy1) — V(AUC) then let P11 be a path in Dy
from r; to r;11 and internally disjoint from A U C'; we see that A; 1 := A; U ajAaj1q,Ciaq =
CiucCepqq, Riy1 := Ry U P4 are the desired paths in Sj+1. So we may assume by symmetry
that r11 € V(ajp14a; — aj41). Let Q41 be a path in Dy from r; to a;+1 and internally
disjoint from AU C. Now Ryy1 := AU aqAri41,Ciq = CiUCeyr, Ajv1 == R U Q41 are
the desired paths in Spyq.

We claim that J(A,C) has no vertex in (arAy1 U cxCy1) — {ag,cr}. For, suppose there
exists r € V(J(A, C)) such that r € V(arAy; — ar) UV (cxCy1 — cx). Then let Ay, Ck, Ry be
independent (induced) paths in Sy from y; to ag,cg,r, respectively. Let A, C’ be obtained
from A, C by replacing ax Ay, c,Cyy with Ay, Ck, respectively. We see that J(A’, C') contains
J(A,C) and r, contradicting (c).

Therefore, a € V(z1Aay) and ¢ € V(21Ccy). Moreover, no (A U C)-bridge of H in L(A)
intersects ar Ay —ay, (by (10)). Let S; be the union of S and all (AUC)-bridges of H contained
in L(C) and intersecting ¢;Cy1 —cx. Then by (5) and (11), N(S;, —{ax, cx }) — {ak, cx, 2,2} C
V(21Xz). Since G is 5-connected, N (S}, — {ax, cx}) — {a, ¢k, x2, y2} # 0.

We may assume that N(S, — {ax, cx}) — {y2, z2, ar, cr} # {z1}. For, otherwise, G has a
separation (G1,G2) such that V(G1 N Ga) = {ag,ck, z1,22,y2} and X U P UQ C Gy, and
S;. C Ga. Clearly, |[V(G1)| > 7. Since G is 5-connected and y1y2 ¢ E(G), |V(G2)| > 7. Hence,
the assertion follows from Lemma 2.4
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Thus, we may let z € N(S) — {ag,cr}) — {ak, ¢k, x1, 2, y2} such that z; Xz is maximal.
Then z # z. For otherwise, let r € V(S}) — {a,ci} such that rz; € E(G). Let v’ = r if
r € V(Sk) and, otherwise, let 7' € V(¢ ,Cy1 — ¢) with r'r € E(G) (which exists by (11)).
Let Ay, Cp, Ri be independent (induced) paths in Sy from y; to ag,ck,r’, respectively. Now
290BqUQ U aAz U (z1r7" U R) UC, UcpCcU P UpBys is a path in H through 29, 21, y1, 92 in
order, contradicting (1).

Let C* be the subgraph of G induced by the union of x1 X z—x1 and the vertices of L(C)—C
adjacent to c¢;Cy; — ¢ (each of which, by (11), has exactly two neighbors on C and exactly
two on z1Xz1). Clearly, C* is connected. Let G, = G[z1Xz U S) + 2] and let G, be the
graph obtained from G, — {x1,z2} by contracting C* to a new vertex c*.

Note that G’, has no disjoint paths from ag,ci to ¢*,y1, respectively; as otherwise, such
paths, ¢xCcU P U pBys, and apAa U Q U qBzo give two disjoint paths in H which would
contradict the choice of Y, Z. Hence, by Lemma there exists a collection A of subsets of
V(G,) — {ag, ck, c*, 31} such that (G, A, ak, ¢k, c*,y1) is 3-planar. We choose A so that each
member of A is minimal and, subject to this, |.4| is minimal.

We claim that A = . For, let T € A. By (10), TNV (L(A)) = (). Moreover, TNV (L(C)) =
(; for otherwise, by (11), ¢* € N(T) and |N(T)NV(C)| = 2; so by (11) again (and since C
is induced in H), (G, A—{T}, ak,ck,c*,y1) is 3-planar, contradicting the choice of A. Thus,
G[T] has a component, say 17", such that 7" C L(A, C). Hence, for any t € V(T"), L(A, C) has
a path from ¢ to aAy; — y; (respectively, cCy; — y1) and internally disjoint from AU C'. Since
G is b-connected, {1,229} N N(T") # (. Therefore, for some i € [2], G’ contains a path from
; to aAy; — y1 as well as a path from z; to ¢cCy; — y1, both internally disjoint from K U X.
However, this contradicts (9).

Hence, (G, ag, ¢k, c*,y1) is planar. So by (6) and (11), (G, — x2, a, ¢k, 2, Z1,y1) is planar.
By (9) and (10), N(z2) NV (Sk) C V(arAy1). Therefore, since (G, — x2) — arAy; is connected
(by (10)), (G, ag, ck, z,x2) is planar.

We claim that {ag, cg, 2, 22,92} is a 5-cut in G. For, otherwise, by (7) and (9), G’ has a
path S; from z1 to 21Cc; — {21, ¢} and internally disjoint from K U X. However, G’ has a
path S from z to ¢ Xy1 — ¢ and internally disjoint from K U X. Now 51, 59 contradict the
second part of (6).

Hence, G has a separation (G7,G3) such that V(Gy N Ge) = {ag,ck, 2, 22,y2}, BPU P U
QUX C Gy, and G, C Gy. Clearly, |V(G;)| > 7 for i € [2]. So (i) or (i) or (iii) follows from
Lemma 2.3

Now that we have established (12), the remainder of this proof will make heavy use of @’.
Our next goal is to obtain structure around z;, which is done using claims (13) — (17). We
may assume that

(13) 2121 € E(X), w € V(A) — {y1, 21} for any choice of W in (7), and G’ has no path from
x9 to (AU C) — y; and internally disjoint from K U Q' U X.

Let Py, P» be the paths in (4) with ¢* = p. Suppose z121 ¢ E(X). Let 215 € E(X). By (6),
G has a path S from s to some s’ € V(C) — {y1, 21} and internally disjoint from K U Q' U X
(as Q' C J(A,C)). Hence, z9z9 U 22 Xyo U (PLUqQ¢ UQ) U (PoUPUcCs' USUsz)U (AU
21 Xy2) UG[{x1,x2,91,92}] is a TK5 in G’ with branch vertices x1, 22, y1, Y2, 22.

Now suppose W is a path in (7) ending at w € V(C) — {y1,21}. Then zoxoUz0 Xy U (P U
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qQd' UQNYU(P,UPUcCwUW)U(AUz Xy2) UG[{z1,x2,y1,y2}] is a TK5 in G’ with branch
vertices x1, X2, Y1, Y2, 22.

Finally, suppose G’ has a path S from x9 to some s € V(AU C) — {y1} and internally
disjoint from KUQ'UX. If s € V(A —y1) then 2121 Uz Xy UC U (21 AsUS) U (Q' UG QqU
qBy2)UG[{x1,x2,y1,y2}] is a T K5 in G’ with branch vertices 1, 2, y1,y2, 21. If s € V(C —11)
then z121 U 21 Xya UAU (2:Cs U S) U (Q'U ¢ QqU qBys) UG[{x1,22,y1,y2}] is a TKy in G’
with branch vertices x1, x2, y1, y2, 21.

(14) We may assume that G’ has no path from y; X 29 to (AU C) — y; and internally disjoint
from K U Q' U X, and no path from y2 X2, — 21 to A — 21 and internally disjoint from
KuQ uX.

First, suppose S is a path in G’ from some s € V(y2X23) to some s € V(AU C) — {y1}
and internally disjoint from K U Q' U X. Then s # yy as Ng(y2) = {w1,we, ws, z1,22}. If
s’ € V(C—yp) then z121Uz1 Xyo UAU(21Cs'"USUs X x2)U(Q'Uq' QqUqBy2)UG{x1, T2, Y1, Y2 }]
is a TKy in G’ with branch vertices 1,2, y1,y2,21. If s € V(A —y;) then z121 U 21 Xy U
CU (A8 USUsXxo)U(Q UG QqUqBy2) UG[{z1,22,y1,y2}] is a TK5 in G’ with branch
vertices x1, X2, Y1, Y2, 21-

Now suppose S is a path in G’ from s € V(y2X21 — 21) to s’ € V(A — 21) and internally
disjoint from K U Q' U X. Let Pi, P, be the paths in (4) with ¢* = p. Then z9w9 U 20Xy U
(PLU¢QR{ UQ)U(P,UPUCcCz Uzizy) U (y1As' US U sXys) UG{x1,x2,91,y2}] is a TK5
in G’ with branch vertices x1, 2, y1, Y2, 22.

(15) We may assume that

e J(A,C)N(21Cc—c) =0,

e any path in J(A,C) from A — {y1,21} to (P —¢)U(Q —a) U (Q" —y1) U B and
internally disjoint from K U @’ must end on (Q U Q') — ¢, and

e for any (AU C)-bridge D of H with D # J(A,C), if V(D) NV (z1:Cc —¢) # 0 and
u € V(D)NV(z14Ay; — z1) then J(A,C) N (z14u — {z1,u}) = 0.

First, suppose there exists s € V(J(A,C)) NV (z1Cc — ¢). Then H has a path S from s to
some s € V(P —¢c)UV(Q—a)UV(Q —y1) UV (B —ys2) and internally disjoint from K U Q’.
Ifs e V(Q —y1)UV(Q—a)UV(22Bp—p) then SU(Q" —y1) U (Q —a) U (22Bp — p) contains
a path S’ from s to 29; so S’ UsCz UAUy;CcU PUpBys is a path in H through 29, 21, y1,y2
in order, contradicting (1). Hence, s’ € V(P — ¢) UV (y2Bp — y2) and, by (2), s = z1. Let
Py, P, be the paths in (4) with ¢* =p (if s € V(P —¢)) or ¢* = &' (if s € V(y2Bp) — {p, y2})-
Then S U (P — ¢) U P, contains a path S’ from 21 to z2. Let W, w be given as in (7). By (13),
w € V(A) —{y1,21}. Now 2009 U 290X yo U 2121 U 21 Xyo US" U (PLUQ U aAw UW) U (CU
y122) U G[{z1,22,y2}] is a TK5 in G’ with branch vertices x4, x2,y2, 21, 22.

Now suppose S is path in J(A,C) from s € V(A —{y1,21}) to s’ € V(P —¢) UV (B —q)
and internally disjoint from K U Q'. Since Ng/(y2) = {w1, we, w3, x1,x2}, 8 # yo. Let P, Py
be the paths in (4) with ¢* =p (if & € V(P —¢)) or ¢* = §' (if s € V(B —¢q)). Let S’ be a path
in P,USU (P —c¢) from s to z3. Let W, w be given as in (7). By (13), w € V(A) — {y1, 21}
Hence, zowo U 20Xy U (P UqQq' UQ ) U (S"UsAw U W)U (C Uz Xy2) UG[{z1,22,y1,y2}] is
a TKy in G’ with branch vertices 1, z2, Y1, y2, 22.
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Finally, suppose D is some (AUC)-bridge of H with D # J(A,C), v € V(D)NV(z:Cc—c),
and u € V(D)NV(z1Ay1 — z1). Then D has a path T from v to u and internally disjoint from
KUQ'. If there exists s € V(J(A,C)) NV (z1Au — {z1,u}) then J(A,C) has a path S from s
to some s’ € V(Q — a) and internally disjoint from K. Now 23BqU ¢Qs' U S U sAz; Uz Cv U
T UuAy; Uy1CcU P U pBys is a path in H through 29, 21,41, y2 in order, contradicting (1).

(16) We may assume L(A) = 0.

Suppose L(A) # (. For each (AU C)-bridge R of H contained in L(A), let a;(R),a2(R) €
V(RN A) with a1(R)Aas(R) maximal. Let Ry,..., R, be a maximal sequence of (A U C)-
brldges of H contained in L(A), such that for ¢ = 2,...,m, R; contains an internal vertex of
U] 1( 1(Rj)Aaz(R;)) (which is a path). Let a1,as € V(A) such that JL, a1(R;)Aaz(R;) =
a1 Aasy. Let L = Um_l R;.

By (c), J(4, ) (a1das — {a1,a2}) = 0. By (d), L(A,C) N (a1 daz — {a1,a2}) = 0. By
(10), a1, a2 € V(zlAa) So z1 ¢ N(LUajAas — {a1,as}). Hence by (14), V(21 Xz — y2) N
N(LUayAaz —{a1,a2}) = 0. By (13), 2 ¢ N(LUajAaz — {a1,a2}). Thus, {a1,a2,x1,y2} is
a cut in G separating L from X, which is a contradiction (since G is 5-connected).

(17) zic € E(C), z1y2 € E(G), and z has degree 5 in G.

Let C* be the union of z;Cc and all (A U C)-bridges of H intersecting z1Cc — c¢. By (15),
V(C*NJ(AC)) ={c}.

Suppose (17) fails. If C* = z;Cc then, since A, C are induced paths and L(A) = 0 (by (16)),
z1y2 € E(G) and 21Cc # z1¢; so any vertex of z1Cc—{c, z1 } would have degree 2 in G (by (15)),
a contradiction. So C* — z1Cc # (). Since G’ — X is 2-connected, (C* — z21Cc) N (A — z1) # 0
by (¢) (and since J(A.C)NN(zCc — ¢) = () by (15)). Moreover, if |V (21C¢)| > 3 then there is
a path in C* from z1Cc — {¢, 21} to A — z; and internally disjoint from AU C.

Let a* € V(AN C*) with a*Ay; minimal, and let u € V(21 Xy2) with uXys minimal such
that u is a neighbor of (C* — ¢) U (z14a* — a™).

We may assume that {a*,c,u,z1,y2} is a 5-cut in G. First, note, by (15), that J(A4,C) N
((z14a* — a*) U (21Cc — ¢)) = (0 (in particular, a* € V(z1A4a)). Hence, if u = 2; then it
is clear from (d), (13) and (14) that {a*,c,u,x1,y2} is a b-cut in G. So we may assume
u # z1. Then G’ contains a path T from u to v € V(A — 21) and internally disjoint from
AUcCy1 UPUQUQ'UB’. Suppose {a*,c,u,z1,y2} is not a 5-cut in G. Then by (d), (13) and
(14), G’ has a path R from r € V(z1Xu—u) tor’ € V(P —c)UV(Q —a)UV(Q —y1) UV (B')
and internally disjoint from K U X. Note that ' # ys as Ng/(y2) = {wr, wa, ws, x1,x2}. If
r" € V(B'—q) then let Pi, P, be the paths in (4) with ¢* = r/; now 2929 U2 Xy U (P UqQq' U
QYU (P,URUrXmz)U (11Av UT UuXye) UG[{x1,22,91,92}] is a TK5 in G with branch
vertices o1, T2, Y1,Y2, 22. If ¥’ € V(P — ¢) then let Pj, P, be the paths in (4) with ¢* = p; now
29w9Uzo X ya U(P1UqQq' UQ" ) U(P,UpPr'URUr X 1)U (y1 A/ UT UuX y2 ) UG[{x1, 22, Y1, Y2 } 18
a T K5 in G with branch vertices x1, z2, y1, Y2, 22. Now assume r’ € V(Q—a)UV(Q'—y1). Then
(Q—a)U(Q'—y1)UR contains a path R’ from r to q. Let Py, P» be the paths in (4) with ¢* = p;
now 2929 Uz0 Xya U(PLUR UrXaz ) U(P,UPUcCyr) U (y1 Av'UTUuXy2) UG[{ 1, 22, Y1, Y2}
is a T K5 in G with branch vertices x1, x2, Y1, Y2, 2o.

Thus, G has a separation (G, G2) such that V(G1NGe) = {a*, c,u,x1,y2}, uXxaUPUQ C
G1, and C* U z1CcU z1 Aa® C Go. Suppose G — yo contains disjoint paths Tp,To from w, xq
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to a*, ¢, respectively. Let P;, P, be the paths in (4) with ¢* = p. Then zoz9 U 20X ya U (P U
qQqd UQU(P,UPUT,)U(y1 Aa*UTy UuXys) UG[{x1, 22, y1,y2}] is a TK5 in G’ with branch
vertices x1, T2, Y1, Y2, z2. S0 we may assume that such 77,75 do not exist. Then by Lemma 2.1
(G2 — ya2,u,21,a*,¢) is planar (as G is 5-connected). If |[V(G2)| > 7 then, by Lemma [2.3] (i)
or (i7) or (i7i) holds. Hence, we may assume that |V (Gz)| = 6 and, hence, we have (17).

We have now forced a structure around z;. Next, we study the structure of G'[ B’ Uy, X 29]
to complete the proof of Theorem We may assume that

(18) (G'[B' UyaXza],p,q, 22, y2) is 3-planar.

For, otherwise, by Lemma G'|B" U y2X 25] has disjoint paths Ry, Ry from ¢, p to yg, 29,
respectively. Now 2121 Uz Xy2s UAU(21CcUPURoUzox2) U(R1UqQq' UQ N UG[{x1, 22, y1, Y2}
is a TK5 in G’ with branch vertices x1, 2,91, Y2, 21. So we may assume (18).

Since G is 5-connected, G is (5, V(K U Q' Uys Xz U z121))-connected. Recall that wyys €
E(z1Xys2). Then wyy2 and w; X z; are independent paths in G from w; to ya, 21, respectively.
So by Lemma@, G has five independent paths 77, Zo, Z3, Z4, Z5 from w1 to 21, yo, 23, 24, 25,
respectively, and internally disjoint from K UQ' UysXxo U 2121, where 23,24, 25 € V(KU Q' U
y2Xx9 U z121). Note that we may assume Zy = wyye. Hence, Z1, Zy, Z3, Z4, Z5 are paths in
G’. By the fact that X is induced, by (14), and by (5) and (17), 23, 24,25 € V(P)UV(Q —a)U
V(Q)UV(B' —y2). Recall that L(A) = () from (16), and recall W and w from (7) and (13).

(19) We may assume that at least two of Z3, Zy, Z5 end in B’ — ys.

First, suppose at least two of Z3, Z4, Z5 end on P. Without loss of generality, let ¢, z3, z4,p
occur on P in this order. Let P;, P» be the paths in (4) with ¢* = p. Then (Z; U z121) U Zo U
2029 U 2o Xyo U(Z4Uzg PpUPy)U(Z3Uz3PcUcCy Uyizo) U(PLUQUaAwUW )UG{z1, 22, y2 }]
is a TK5 in G’ with branch vertices w1, z1, T2, Y2, 22.

Now assume at least two of Z3, Z4, Zs are on QU Q’, say Z3 and Z;. Then Z3U Z4UQU Q'
contains two independent paths Z3, Z from wy to 2, ¢, respectively, where 2’ € {a,y;}. Hence
(Z1Uz121) U Zo U (Z5U 2" Ayy) U (Z, U qBz U 2922) U (y2Bp U P U cCy1) U Gl{z1, 22, Y1, Y2 }]
is a TK5 in G’ with branch vertices wy, z1, T2, Y1, y2.

So we may assume that z3 € V(B') — {p, ¢}, and hence Z3 = wy23. Suppose none of Z4, Z5
ends in B’ — yo2. Then we may assume z4 € V(P — p). Let Pi, P» be the paths in (4) with
q* = z3. Then (Z1Uz121) U ZyUzox9 U 20X ya U(Z3U Po) U(PLUQUaAwUW)U (Z4Uz4PcU
cCy1 Uyr22) UG[{x1,x2,y2}] is a TK5 in G’ with branch vertices w1, 21, 2, y2, 22.

(20) We may assume that

e w; has at most one neighbor in B’ that is in qBzy or separated from y;Bp in
G'[B' UysX 23] by a 2-cut contained in ¢Bzy, and

e w; has at most one neighbor in B’ that is in y9Bp — 1o or separated from ¢Bzy in
G'[B' UyaX 23] by a 2-cut contained in y, Bp.

Suppose there exist distinct v1,v2 € N(wy) N V(B’) such that for i € [2], v; € V(gBz2)
or G'[B’ U yyX 25] has a 2-cut contained in ¢Bzo and separating v; from y2Bp. Then, since
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(G'[B'"Uys X 29, p, q, 22, y2) is 3-planar (by (18)) and H — ys is 2-connected, G'[B’ 4+ w1] — y2 Bp
contains independent paths Si, Sy from w; to g, z2, respectively. Now wi Xz Uwiys U (S7 U
qQq' U Q") U (SaU z929) U (y1Cc U P U pBys) U G[{x1, 22,41, y2}] is a TK5 in G’ with branch
vertices wi, x1, T2, Y1, Ya-

Now suppose there exist distinct v1, vy € N(wq) NV (B’) such that for i € [2], v; € V(y2Bp)
or G'[B' U yyX29] has a 2-cut contained in yoBp and separating v; from ¢Bz,. Then, since
(G'[B' U y2X 29, p,q, 22,y2) is 3-planar (by (18)) and H — ys is 2-connected, G'[B’ + w1] —
(qBz2 — z2) has independent paths S7,.S2 from w; to p, z2, respectively. Now w; Xz Uwys U
2929 U 29X y2 USo U (S1UPUcCy1 Uyraa) U (22BqUQUaAwUW)UG[{x1,x2,y2}] is a TKj
in G’ with branch vertices w1, z1, T2, Y2, 22.

(21) G'[B' U y2X z9] has a 2-separation (B, Bg) such that N(wqi) NV (B’ — y2) C V(By),
pBq C By, and y2 X 29 C Bs.

Let z € N(w1) NV (B') be arbitrary. If there exists a path S in B’ — (pBya U (¢Bz2 — 22)) from
29 t0 z then 2919 U 20X ys U (22BqU qQq¢' U Q') U (S U zwy Uwi Xx1) U (y1Cc U P U pBys) U
Gl{z1,72,y1,y2}] is a TK35 in G’ with branch vertices x1, 22,91, y2, 22. So we may assume that
such path S does not exist. Then, since (G'[B’ U y2X 29, p, q, 22, y2) is 3-planar (by (18)) and
G’ —X is 2-connected, z € V(y2XpUqBzs) (in which case let B, = z and B = G'[B'Uy2 X 29]),
or G'[B" U ysXz9] has a 2-separation (B, BY)) such that B, N BY C y2Bp U qBzy U y2X 29,
2z € V(B,—BY!)and 20 € V(B) — B.).

We claim that we may assume that w; has exactly two neighbors in B’, say vy, v, such
that v1 € V(y2Bp—1ys2) or G'[B'Uy2 X 29] has a 2-cut contained in y2 Bp and separating v, from
qBzo, and vy € V(qBzy—22) or G'[B'Uy2 X 29] has a 2-cut contained in ¢Bzs and separating vo
from yo Bp. This follows from (20) if for every choice of z, B,NBY C yaBp or B,N B C ¢qBz,.
So we may assume that there exists v € N(w;) NV (B’) such that pBg C Bj, and we choose v
and (B], BY) with B] maximal. If pBq C B/, for all choices of z then, by (18), we have (21).
Thus, we may assume that there exists z € N(w1) NV (B') such that pBq ¢ B., for any choice
of (B, BY). Then B, N BY C yaBp or B, N BY C qBz,. First, assume B, N B, C qBzs. Then
by the maximality of BJ, B’ — y2 Bp has independent paths T3, T, from 29 to ¢, z, respectively.
Hence, zox2Uzo X yoU(T1UqQq UQ" ) U(ToUzw Uwy X x1)U(y1 CcUPUpBys ) UG[{ x1, 22, Y1, Y2 }|
is a TK5 in G’ with branch vertices x1,x2,y1,y2, 22. Now assume B, N BY C y2Bp. Then
by (20), for any t € N(w1) NV(B]), t ¢ V(y2Bp — y2) and G'[B" U y2X 23] has no 2-cut
contained in yoBp and separating ¢ from gBz,. If for every choice of t € N(wy) N V(B)), we
have t € V(qBzs — z2) or G'[B' U yyX 25] has a 2-cut contained in ¢Bzs and separating t from
y2Bp then the claim follows from (20). Hence, we may assume that ¢ can be chosen so that
t ¢ V(qBza — z2) and G'[B’ U y2X 29] has no 2-cut contained in ¢Bzs and separating ¢ from
y2Bp. Then, by (18) and 2-connectedness of G' — X, G[B' +w1| — (¢Bz2 — 22) has independent
paths S1, Se from w; to p, z9, respectively. Now wi Xz Uwiys U zome U ze Xys U S2 U (S1UPU
cCyy Uyro) U (220BqU QU aAw UW) U G[{x1,z2,y2}] is a TK5 in G’ with branch vertices
w1, x1,22,Y2, 22-

Thus, we may assume that Zs = wjv1, Z4 = wivg, and Z5 ends at some v € V(P UQ U
Q') — {a,p,q}. Suppose vs € V(P — p). Let P, P, be the paths in (4) with ¢* = v;. Then
w1 Xz Uwiys U 2oz U 290X ys U (wivg U Po) U (Zs UvsPeU cCyp Uyrze) U (P UQ U aAw U
W)U G[{x1,x2,y2}] is a TK5 in G’ with branch vertices w1, 1, 2, y2, 22.
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Now assume vz € V(QUQ') —{a,q}. Then (B'—y2Bp)UZ5; UQUQ U (A — 21) Uwyvg has
independent paths Ry, Ry from wy to yi, 2o, respectively. So w1 Xz Uwiys U R U (RoUzoxo)U
(y1CcU P U pBys) U G[{x1,x2,11,y2}] is a TK5 in G’ with branch vertices w1, z1,x2, y1, y2.
This completes the proof of (21).

By (21), let V(B1 N BQ) = {tl,tQ} with ¢; € V(yng) and ty € V(qBZQ). Choose {tl,tg}
so that By is minimal. Then we may assume that (G'[B2 + 2], t1,t2, x2,y2) is 3-planar.
For, otherwise, by Lemma G'[Bs + 2] contains disjoint paths 77,75 from tq,t to z2,ys,
respectively. Then 2121 U 21 Xy2 U AU (2:CcU P UpBty UT) U (Q'U ¢'Qq U qBty U Th) U
G[{z1,22,y1,y2}] is a TK5 in G’ with branch vertices x1, x2, Y1, y2, 21

Suppose there exists ss’ € E(G) such that s € V(21 Xw; —wq) and s’ € V(Bg) — {t1,t2}.
Then s ¢ V(X), as X is induced in G’ — z129. By (19), (20) and (21), we may assume that
By — ¢qBty contains a path R from z3 to p. By the minimality of By and 2-connectedness of
H—ys, (Ba—t1)— (y2X 20— 22) contains independent paths Ry, Ry from 29 to ', to, respectively.
Now 2929 U 20 Xyo U (R1 U s'sUsXx1) U (RaUteBqUqQq UQ) U (y1CcUPURU zzwiyz) U
G[{z1,22,y1,y2}] is a TK5 in G’ with branch vertices x1, 2, Y1, y2, 22.

Thus, we may assume that ss’ does not exist. Since G is 5-connected, {t1,t2, y2, x2} is not
a cut. So H has a path T from some ¢t € V(y2Xx2) — {y2, x2} to some ¢’ € V(PUQU Q' U
AUC) —{p,q} and internally disjoint from K UQ'. By (14), ' ¢ V(AUC) — {11 }.

Ift € V(P —p) then 2121 U2 Xya U AU (21CcUcPt UT UtXz9) U (Q'Uq' QqU qBys) U
G[{z1,22,y1,y2}] is a TK5 in G’ with branch vertices x1,x2,y1,%2,21. So we assume t' €
V(QuU@Q') —{a,q}

Ifqg#q ort' € V(Q') then (TUQUQ') — ¢ has a path Q* from ¢ to y1; now z121 Uz Xy U
AU (21CcU P UpBzy U 29me) U (Q* U sXy2) UG[{x1,x2,y1,y2}] is a TK5 in G’ with branch
vertices x1, z2,Y1,Y2,21. So assume ¢ = ¢’ and t' € V(Q) — {a,q}. Then z121 U 21 Xy, UC U
(z1AaUaQt UT UtXxe) U(Q'UqBy2) UG[{x1,x2,y1,y2}] is a TK5 in G’ with branch vertices
x1,22,Y1,Y2, 21- 1
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