The Kelmans-Seymour conjecture II: 2-vertices in K_{4}^{-}

Dawei He* Yan Wang, Xingxing Yu ‡
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332-0160, USA

Abstract

We use K_{4}^{-}to denote the graph obtained from K_{4} by removing an edge, and use $T K_{5}$ to denote a subdivision of K_{5}. Let G be a 5 -connected nonplanar graph and $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq$ $V(G)$ such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$with $y_{1} y_{2} \notin E(G)$. Let $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-$ $\left\{x_{1}, x_{2}\right\}$ be distinct. We show that G contains a $T K_{5}$ in which y_{2} is not a branch vertex, or $G-y_{2}$ contains K_{4}^{-}, or G has a special 5-separation, or $G-\left\{y_{2} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\}$ contains $T K_{5}$.

AMS Subject Classification: 05C38, 05C40, 05C75
Keywords: Subdivision of graph, independent paths, nonseparating path, planar graph

[^0]
1 Introduction

We use notation and terminology from [3]. In particular, for a graph K, we use $T K$ to denote a subdivision of K. The vertices in a $T K$ corresponding to the vertices of K are its branch vertices. Kelmans [6] and, independently, Seymour [11] conjectured that every 5connected nonplanar graph contains $T K_{5}$. In [7. 8], this conjecture is shown to be true for graphs containing K_{4}^{-}.

In [3] we outline a strategy to prove the Kelmans-Seymour conjecture for graphs containing no K_{4}^{-}. Let G be a 5 -connected nonplanar graph containing no K_{4}^{-}. Then by a result of Kawarabayashi [4], G contains an edge e such that G / e is 5 -connected. If G / e is planar, we can apply a discharging argument. So assume G / e is not planar. Let M be a maximal connected subgraph of G such that G / M is 5 -connected and nonplanar. Let z denote the vertex representing the contraction of M, and let $H=G / M$. Then one of the following holds:
(a) H contains a K_{4}^{-}in which z is of degree 2.
(b) H contains a K_{4}^{-}in which z is of degree 3 .
(c) H does not contain K_{4}^{-}, and there exists $T \subseteq H$ such that $z \in V(T), T \cong K_{2}$ or $T \cong K_{3}$, and H / T is 5 -connected and planar.
(d) H does not contain K_{4}^{-}, and for any $T \subseteq H$ with $z \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}$, H / T is not 5 -connected.

In this paper, we deal with (a) by taking advantage of the K_{4}^{-}containing z. We prove the following result, in which the vertex y_{2} plays the role of z above.

Theorem 1.1 Let G be a 5-connected nonplanar graph and $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq V(G)$ such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$with $y_{1} y_{2} \notin E(G)$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which y_{2} is not a branch vertex.
(ii) $G-y_{2}$ contains K_{4}^{-}.
(iii) G has a 5-separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{y_{2}, a_{1}, a_{2}, a_{3}, a_{4}\right\}$, and G_{2} is the graph obtained from the edge-disjoint union of the 8 -cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding y_{2} and the edges $y_{2} b_{i}$ for $i \in[4]$.
(iv) For $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}, G-\left\{y_{2} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\}$ contains $T K_{5}$.

Note that when Theorem 1.1 is applied later, G will be a graph obtained from a 5 -connected nonplanar graph by contracting a connected subgraph, and y_{2} represents that contraction. So we need a $T K_{5}$ in G to satisfy (i) or $(i v)$ to produce a $T K_{5}$ in the original graph. Note that (ii) will not occur if the original graph is K_{4}^{-}-free. Moreover, if (iii) occurs then we may apply Proposition 1.3 in [3] to produce a $T K_{5}$ in the original graph.

The arguments used in this paper to prove Theorem 1.1 is similar to those used in [7,8]. Namely, we will find a substructure in the graph and use it to find the desired $T K_{5}$. However, since the $T K_{5}$ we are looking for must use certain special edges at y_{2}, the arguments here are more complicated and make heavy use of the option (ii).

We organize this paper as follows. In Section 2, we collect a few known results that will be used in the proof of Theorem 1.1. We will produce an intermediate structure in G which consists of eight special paths X, Y, Z, A, B, C, P, Q, see Figure 1 (where X is the path in bold and Y, Z are not shown). In Section 3, we find the path X in G between x_{1} and x_{2} whose deletion results in a graph satisfying certain connectivity requirement. In Section 4, we find the paths Y, Z, A, B, C, P, Q in G. In Section 5, we use this structure to find the desired $T K_{5}$ for Theorem 1.1.

2 Previous results

Let G be a graph and $A \subseteq V(G)$, and let k be a positive integer. Let $[k]=\{1,2, \ldots, k\}$. Let C be a cycle in G with a fixed orientation (so that we can speak of clockwise and anticlockwise directions). For two vertices $x, y \in V(C), x C y$ denotes the subpath of C from x to y in clockwise order. (If $x=y$ then $x C y$ denotes the path consisting of the single vertex x.) Recall from [3] that G is (k, A)-connected if, for any cut T of G with $|T|<k$, every component of $G-T$ contains a vertex from A. We say that (G, A) is plane if G is drawn in the plane with no crossing edges such that the vertices in A are incident with the unbounded face of G. Moreover, for vertices $a_{1}, \ldots, a_{k} \in V(G)$, we say $\left(G, a_{1}, \ldots, a_{k}\right)$ is plane if G is drawn in a closed disc in the plane with no crossing edges such that a_{1}, \ldots, a_{k} occur on the boundary of the disc in this cyclic order. We say that (G, A) is planar if G has a plane representation such that (G, A) is plane. Similarly, $\left(G, a_{1}, \ldots, a_{k}\right)$ is planar if G has a plane representation such that $\left(G, a_{1}, \ldots, a_{k}\right)$ is plane.

In this section, we list a few known results that we need. We begin with a technical notion. A 3-planar graph (G, \mathcal{A}) consists of a graph G and a collection $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ of pairwise disjoint subsets of $V(G)$ (possibly $\mathcal{A}=\emptyset$) such that

- for distinct $i, j \in[k], N\left(A_{i}\right) \cap A_{j}=\emptyset$,
- for $i \in[k],\left|N\left(A_{i}\right)\right| \leq 3$, and
- if $p(G, \mathcal{A})$ denotes the graph obtained from G by (for each $i \in[k]$) deleting A_{i} and adding new edges joining every pair of distinct vertices in $N\left(A_{i}\right)$, then $p(G, \mathcal{A})$ can be drawn in a closed disc with no crossing edges.

If, in addition, b_{1}, \ldots, b_{n} are vertices in G such that $b_{i} \notin A_{j}$ for all $i \in[n]$ and $j \in[k], p(G, A)$ can be drawn in a closed disc in the plane with no crossing edges, and b_{1}, \ldots, b_{n} occur on the boundary of the disc in this cyclic order, then we say that $\left(G, \mathcal{A}, b_{1}, \ldots, b_{n}\right)$ is 3-planar. If there is no need to specify \mathcal{A}, we will simply say that (G, b_{1}, \ldots, b_{n}) is 3-planar.

It is easy to see that if $\left(G, \mathcal{A}, b_{1}, \ldots, b_{n}\right)$ is 3-planar and G is $\left(4,\left\{b_{1}, \ldots, b_{n}\right\}\right)$-connected then $\mathcal{A}=\emptyset$ and $\left(G, b_{1}, \ldots, b_{n}\right)$ is planar.

We can now state the following result of Seymour [12]; equivalent versions can be found in (1, 13, 14).

Lemma 2.1 Let G be a graph and $s_{1}, s_{2}, t_{1}, t_{2}$ be distinct vertices of G. Then exactly one of the following holds:
(i) G contains disjoint paths from s_{1} to t_{1} and from s_{2} to t_{2}.
(ii) $\left(G, s_{1}, s_{2}, t_{1}, t_{2}\right)$ is 3-planar.

We also state a generalization of Lemma 2.1, which is a consequence of Theorems 2.3 and 2.4 in 10.

Lemma 2.2 Let G be a graph, $v_{1}, \ldots, v_{n} \in V(G)$ be distinct, and $n \geq 4$. Then exactly one of the following holds:
(i) There exist $1 \leq i<j<k<l \leq n$ such that G contains disjoint paths from v_{i}, v_{j} to v_{k}, v_{l}, respectively.
(ii) $\left(G, v_{1}, v_{2}, \ldots, v_{n}\right)$ is 3-planar.

The next result is Theorem 1.1 in [3].
Lemma 2.3 Let G be a 5-connected nonplanar graph and let $\left(G_{1}, G_{2}\right)$ be a 5-separation in G. Suppose $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$, $a \in V\left(G_{1} \cap G_{2}\right)$, and $\left(G_{2}-a, V\left(G_{1} \cap G_{2}\right)-\{a\}\right)$ is planar. Then one of the following holds:
(i) G contains a $T K_{5}$ in which a is not a branch vertex.
(ii) $G-a$ contains K_{4}^{-}.
(iii) G has a 5 -separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ such that $V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)=\left\{a, a_{1}, a_{2}, a_{3}, a_{4}\right\}, G_{1} \subseteq G_{1}^{\prime}$, and G_{2}^{\prime} is the graph obtained from the edge-disjoint union of the 8-cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding a and the edges $a b_{i}$ for $i \in[4]$.

Another result we need is Theorem 1.2 from [3].
Lemma 2.4 Let G be a 5 -connected graph and $\left(G_{1}, G_{2}\right)$ be a 5 -separation in G. Suppose that $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$ and $G\left[V\left(G_{1} \cap G_{2}\right)\right]$ contains a triangle a $a_{1} a_{2} a$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which a is not a branch vertex.
(ii) $G-a$ contains K_{4}^{-}.
(iii) G has a 5 -separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ such that $V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)=\left\{a, a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and G_{2}^{\prime} is the graph obtained from the edge-disjoint union of the 8 -cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding a and the edges ab b_{i} for $i \in[4]$.
(iv) For any distinct $u_{1}, u_{2}, u_{3} \in N(a)-\left\{a_{1}, a_{2}\right\}, G-\left\{a v: v \notin\left\{a_{1}, a_{2}, u_{1}, u_{2}, u_{3}\right\}\right\}$ contains $T K_{5}$.

We also need Proposition 4.2 from [3].
Lemma 2.5 Let G be a 5 -connected nonplanar graph and $a \in V(G)$ such that $G-a$ is planar. Then one of the following holds:
(i) G contains a $T K_{5}$ in which a is not a branch vertex.
(ii) $G-a$ contains K_{4}^{-}.
(iii) G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a, a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and G_{2} is the graph obtained from the edge-disjoint union of the 8 -cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding a and the edges abi for $i \in[4]$.

We will make use of the following result of Perfect [9] on independent paths. A collection of paths in a graph are said to be independent if no internal vertex of a path in this collection belongs to another path in the collection.

Lemma 2.6 Let G be a graph, $u \in V(G)$, and $A \subseteq V(G-u)$. Suppose there exist k independent paths from u to distinct $a_{1}, \ldots, a_{k} \in A$, respectively, and otherwise disjoint from A. Then for any $n \geq k$, if there exist n independent paths P_{1}, \ldots, P_{n} in G from u to n distinct vertices in A and otherwise disjoint from A then P_{1}, \ldots, P_{n} may be chosen so that $a_{i} \in V\left(P_{i}\right)$ for $i \in[k]$.

We will also use a result of Watkins and Mesner [15] on cycles through three vertices.
Lemma 2.7 Let G be a 2-connected graph and let y_{1}, y_{2}, y_{3} be three distinct vertices of G. Then there is no cycle in G containing $\left\{y_{1}, y_{2}, y_{3}\right\}$ if, and only if, one of the following statements holds:
(i) There exists a 2-cut S in G and there exist pairwise disjoint subgraphs $D_{y_{i}}$ of $G-S$, $i=1,2,3$, such that $y_{i} \in V\left(D_{y_{i}}\right)$ and each $D_{y_{i}}$ is a union of components of $G-S$.
(ii) There exist 2-cuts $S_{y_{i}}$ of $G, i=1,2,3, z \in S_{y_{1}} \cap S_{y_{2}} \cap S_{y_{3}}$, and pairwise disjoint subgraphs $D_{y_{i}}$ of G, such that $y_{i} \in V\left(D_{y_{i}}\right)$, each $D_{y_{i}}$ is a union of components of $G-S_{y_{i}}$, and $S_{y_{1}}-\{z\}, S_{y_{2}}-\{z\}, S_{v}-\{z\}$ are pairwise disjoint.
(iii) There exist pairwise disjoint 2 -cuts $S_{y_{i}}$ in $G, i=1,2,3$, and pairwise disjoint subgraphs $D_{y_{i}}$ of $R-S_{y_{i}}$ such that $y_{i} \in V\left(D_{y_{i}}\right)$, each $D_{y_{i}}$ is a union of components of $G-S_{y_{i}}$, and $G-V\left(D_{y_{1}} \cup D_{y_{2}} \cup D_{y_{3}}\right)$ has precisely two components, each containing exactly one vertex from $S_{y_{i}}$ for $i \in[3]$.

3 Nonseparating paths

Our first step for proving Theorem 1.1 is to find the path X in G (see Figure 11) whose removal does not affect connectivity too much.

We need the concept of chain of blocks. Let G be a graph and $\{u, v\} \subseteq V(G)$. We say that a sequence of blocks B_{1}, \ldots, B_{k} in G is a chain of blocks from u to v if either $k=1$ and $u, v \in$ $V\left(B_{1}\right)$ are distinct, or $k \geq 2, u \in V\left(B_{1}\right)-V\left(B_{2}\right), v \in V\left(B_{k}\right)-V\left(B_{k-1}\right),\left|V\left(B_{i}\right) \cap V\left(B_{i+1}\right)\right|=1$ for $i \in[k-1]$, and $V\left(B_{i}\right) \cap V\left(B_{j}\right)=\emptyset$ for any $i, j \in[k]$ with $|i-j| \geq 2$. For convenience, we also view this chain of blocks as $\bigcup_{i=1}^{k} B_{i}$, a subgraph of G.

The following result was implicit in $[2,5]$. Since it has not been stated and proved explicitly before, we include a proof. We need the concept of a bridge. Let G be a graph and H a subgraph of G. Then an H-bridge of G is a subgraph of G that is either induced by an edge of $G-E(H)$ with both ends in $V(H)$, or induced by the edges in some component of $G-H$ as well as those edges of G from that component to H.

Lemma 3.1 Let G be a graph and let $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that G is $\left(4,\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right)$ connected. Suppose there exists a path X in $G-x_{1} x_{2}$ from x_{1} to x_{2} such that $G-X$ contains a chain of blocks B from y_{1} to y_{2}. Then one of the following holds:
(i) There is a 4-separation $\left(G_{1}, G_{2}\right)$ in G such that $B+\left\{x_{1}, x_{2}\right\} \subseteq G_{1},\left|V\left(G_{2}\right)\right| \geq 6$, and $\left(G_{2}, V\left(G_{1} \cap G_{2}\right)\right)$ is planar.
(ii) There exists an induced path X^{\prime} in $G-x_{1} x_{2}$ from x_{1} to x_{2} such that $G-X^{\prime}$ is a chain of blocks from y_{1} to y_{2} and contains B.

Proof. Without loss of generality, we may assume that X is induced in $G-x_{1} x_{2}$. We choose such X that
(1) B is maximal,
(2) the smallest size of a component of $G-X$ disjoint from B (if exists) is minimal, and
(3) the number of components of $G-X$ is minimal.

We claim that $G-X$ is connected. For, suppose $G-X$ is not connected and let D be a component of $G-X$ other than B such that $|V(D)|$ is minimal. Let $u, v \in N(D) \cap V(X)$ such that $u X v$ is maximal. Since G is $\left(4,\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right)$-connected, $u X v-\{u, v\}$ contains a neighbor of some component of $G-X$ other than D. Let Q be an induced path in $G[D+\{u, v\}]$ from u to v, and let X^{\prime} be obtained from X by replacing $u X v$ with Q. Then B is contained in B^{\prime}, the chain of blocks in $G-X^{\prime}$ from y_{1} to y_{2}. Moreover, either the smallest size of a component of $G-X^{\prime}$ disjoint from B^{\prime} is smaller than the smallest size of a component of $G-X$ disjoint from B, or the number of components of $G-X^{\prime}$ is smaller than the number of components of $G-X$. This gives a contradiction to (1) or (2) or (3). Hence, $G-X$ is connected.

If $G-X=B$, we are done with $X^{\prime}:=X$. So assume $G-X \neq B$. By (1), each B-bridge of $G-X$ has exactly one vertex in B. Thus, for each B-bridge D of $G-X$, let $b_{D} \in V(D) \cap V(B)$ and $u_{D}, v_{D} \in N\left(D-b_{D}\right) \cap V(X)$ such that $u_{D} X v_{D}$ is maximal.

We now define a new graph \mathcal{B} such that $V(\mathcal{B})$ is the set of all B-bridges of $G-X$, and two B-bridges in $G-X, C$ and D, are adjacent if $u_{C} X v_{C}-\left\{u_{C}, v_{C}\right\}$ contains a neighbor of $D-b_{D}$ or $u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}$ contains a neighbor of $C-b_{C}$. Let \mathcal{D} be a component of \mathcal{B}. Then $\bigcup_{D \in V(\mathcal{D})} u_{D} X v_{D}$ is a subpath of X. Let $S_{\mathcal{D}}$ be the union of $\left\{b_{D}: D \in V(\mathcal{D})\right\}$ and the set of neighbors in B of the internal vertices of $\bigcup_{D \in V(\mathcal{D})} u_{D} X v_{D}$.

Suppose \mathcal{B} has a component \mathcal{D} such that $\left|S_{\mathcal{D}}\right| \leq 2$. Let $u, v \in V(X)$ such that $u X v=$ $\bigcup_{D \in V(\mathcal{D})} u_{D} X v_{D}$. Then $\{u, v\} \cup S_{\mathcal{D}}$ is a cut in G. Since G is $\left(4,\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right)$-connected, $\left|S_{\mathcal{D}}\right|=2$. So there is a 4 -separation $\left(G_{1}, G_{2}\right)$ in G such that $V\left(G_{1} \cap G_{2}\right)=\{u, v\} \cup S_{\mathcal{D}}$, $B+\left\{x_{1}, x_{2}\right\} \subseteq G_{1}$, and $D \subseteq G_{2}$ for $D \in V(\mathcal{D})$. Hence $\left|V\left(G_{2}\right)\right| \geq 6$. If G_{2} has disjoint paths S_{1}, S_{2}, with S_{1} from u to v and S_{2} between the vertices in $S_{\mathcal{D}}$, then choose S_{1} to be induced and let $X^{\prime}=x_{1} X u \cup S_{1} \cup v X x_{2}$; now $B \cup S_{2}$ is contained in the chain of blocks in $G-X^{\prime}$ from y_{1} to y_{2}, contradicting (1). So no such two paths exist. Hence, by Lemma 2.1, $\left(G_{2}, V\left(G_{1} \cap G_{2}\right)\right)$ is planar and thus (i) holds.

Therefore, we may assume that $\left|S_{\mathcal{D}}\right| \geq 3$ for any component \mathcal{D} of \mathcal{B}. Hence, there exist a component \mathcal{D} of \mathcal{B} and $D \in V(\mathcal{D})$ with the following property: $u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}$ contains
vertices w_{1}, w_{2} and $S_{\mathcal{D}}$ contains distinct vertices b_{1}, b_{2} such that for each $i \in[2],\left\{b_{i}, w_{i}\right\}$ is contained in a $(B \cup X)$-bridge of G disjoint from $D-b_{D}$. Let P denote an induced path in $G\left[D+\left\{u_{D}, v_{D}\right\}\right]$ between u_{D} and v_{D}, and let X^{\prime} be obtained from X by replacing $u_{D} X v_{D}$ with P. Clearly, the chain of blocks in $G-X^{\prime}$ from y_{1} to y_{2} contains B as well as a path from b_{1} to b_{2} and internally disjoint from $D \cup B$. This is a contradiction to (1).

We now show that the conclusion of Theorem 1.1 holds or we can find a path X in G such that $y_{1}, y_{2} \notin V(X)$ and $\left(G-y_{2}\right)-X$ is 2 -connected.

Lemma 3.2 Let G be a 5-connected nonplanar graph and let $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$with $y_{1} y_{2} \notin E(G)$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which y_{2} is not a branch vertex.
(ii) $G-y_{2}$ contains K_{4}^{-}.
(iii) G has a 5-separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{y_{2}, a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and G_{2} is the graph obtained from the edge-disjoint union of the 8 -cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding y_{2} and the edges $y_{2} b_{i}$ for $i \in[4]$.
(iv) For $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}, G-\left\{y_{2} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\}$ contains $T K_{5}$, or $G-x_{1} x_{2}$ has an induced path X from x_{1} to x_{2} such that $y_{1}, y_{2} \notin V(X), w_{1}, w_{2}, w_{3} \in$ $V(X)$, and $\left(G-y_{2}\right)-X$ is 2-connected.

Proof. First, we may assume that
(1) $G-x_{1} x_{2}$ has an induced path X from x_{1} to x_{2} such that $y_{1}, y_{2} \notin V(X)$ and $\left(G-y_{2}\right)-X$ is 2 -connected.

To see this, let $z \in N\left(y_{1}\right)-\left\{x_{1}, x_{2}\right\}$. Since G is 5 -connected, $\left(G-x_{1} x_{2}\right)-\left\{y_{1}, y_{2}, z\right\}$ has a path X from x_{1} to x_{2}. Thus, we may apply Lemma 3.1 to $G-y_{2}, X$ and $B=y_{1} z$.

Suppose (i) of Lemma 3.1 holds. Then G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $y_{2} \in V\left(G_{1} \cap\right.$ $\left.G_{2}\right),\left\{x_{1}, x_{2}, y_{1}, z\right\} \subseteq V\left(G_{1}\right)$ and $y_{1} z \in E\left(G_{1}\right),\left|V\left(G_{2}\right)\right| \geq 7$, and $\left(G_{2}-y_{2}, V\left(G_{1} \cap G_{2}\right)-\left\{y_{2}\right\}\right)$ is planar. If $\left|V\left(G_{1}\right)\right| \geq 7$ then, by Lemma 2.3 , (i) or (ii) or (iii) holds. If $\left|V\left(G_{1}\right)\right|=5$ then $G_{1}-y_{2}$ has a K_{4}^{-}or $G-y_{2}$ is planar; hence, $(i i)$ holds in the former case, and (i) or (ii) or (iii) holds in the latter case by Lemma 2.5 . Thus we may assume that $\left|V\left(G_{1}\right)\right|=6$. Let $v \in V\left(G_{1}-G_{2}\right)$. Then $v \neq y_{2}$. Since G is 5 -connected, v must be adjacent to all vertices in $V\left(G_{1} \cap G_{2}\right)$. Thus, $v \neq y_{1}$ as $y_{1} y_{2} \notin E(G)$. Now $\left|V\left(G_{1} \cap G_{2}\right) \cap\left\{x_{1}, x_{2}, z\right\}\right| \geq 2$. Therefore, $G\left[\left\{v, y_{1}\right\} \cup\left(V\left(G_{1} \cap G_{2}\right) \cap\left\{x_{1}, x_{2}, z\right\}\right)\right]$ contains K_{4}^{-}; so (ii) holds.

So we may assume that (ii) of Lemma 3.1 holds. Then $\left(G-y_{2}\right)-x_{1} x_{2}$ has an induced path, also denoted by X, from x_{1} to x_{2} such that $\left(G-y_{2}\right)-X$ is a chain of blocks from y_{1} to z. Since $z y_{1} \in E(G),\left(G-y_{2}\right)-X$ is in fact a block. If $V\left(\left(G-y_{2}\right)-X\right)=\left\{y_{1}, z\right\}$ then, since G is 5 -connected and X is induced in $\left(G-y_{2}\right)-x_{1} x_{2}, G\left[\left\{x_{1}, x_{2}, z, y_{1}\right\}\right] \cong K_{4}$; so (ii) holds. This completes the proof of (1).

We wish to prove $(i v)$. So let $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}$ and assume that

$$
G^{\prime}:=G-\left\{y_{2} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\}
$$

does not contain $T K_{5}$. We may assume that
(2) $w_{1}, w_{2}, w_{3} \notin V(X)$.

For, suppose not. If $w_{1}, w_{2}, w_{3} \in V(X)$ then $(i v)$ holds. So, without loss of generality, we may assume $w_{1} \in V(X)-\left\{x_{1}, x_{2}\right\}$ and $w_{2} \in V(G-X)$. Since X is induced in $G-x_{1} x_{2}$ and G is 5-connected, $\left(G-y_{2}\right)-\left(X-w_{1}\right)$ is 2 -connected and, hence, contains independent paths P_{1}, P_{2} from y_{1} to w_{1}, w_{2}, respectively. Then $w_{1} X x_{1} \cup w_{1} X x_{2} \cup w_{1} y_{2} \cup P_{1} \cup\left(y_{2} w_{2} \cup P_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{1}, y_{2}$, a contradiction.
(3) For any $u \in V\left(x_{1} X x_{2}\right)-\left\{x_{1}, x_{2}\right\},\left\{u, y_{1}, y_{2}\right\}$ is not contained in any cycle in $G^{\prime}-(X-u)$.

For, suppose there exists $u \in V\left(x_{1} X x_{2}\right)-\left\{x_{1}, x_{2}\right\}$ such that $\left\{u, y_{1}, y_{2}\right\}$ is contained in a cycle C in $G^{\prime}-(X-u)$. Then $u X x_{1} \cup u X x_{2} \cup C \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $u, x_{1}, x_{2}, y_{1}, y_{2}$, a contradiction. So we have (3).

Let $y_{3} \in V(X)$ such that $y_{3} x_{2} \in E(X)$, and let $H:=G^{\prime}-\left(X-y_{3}\right)$. Note that H is 2 -connected. By (3), no cycle in H contains $\left\{y_{1}, y_{2}, y_{3}\right\}$. Thus, we apply Lemma 2.7 to H. In order to treat simultaneously the three cases in the conclusion of Lemma 2.7, we introduce some notation. Let $S_{y_{i}}=\left\{a_{i}, b_{i}\right\}$ for $i \in$ [3], such that if Lemma 2.7(i) occurs we let $a_{1}=a_{2}=a_{3}, b_{1}=b_{2}=b_{3}$, and $S_{y_{i}}=S$ for $i \in[3]$; if Lemma 2.7 (ii) occurs then $a_{1}=a_{2}=a_{3}$; and if Lemma 2.7 (iii) then $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ belong to different components of $H-V\left(D_{y_{1}} \cup D_{y_{2}} \cup D_{y_{3}}\right)$. If Lemma 2.7 (ii) or Lemma 2.7 (iii) occurs then let B_{a}, B_{b} denote the components of $H-V\left(D_{y_{1}} \cup D_{y_{2}} \cup D_{y_{3}}\right)$ such that for $i \in[3] a_{i} \in V\left(B_{a}\right)$ and $b_{i} \in V\left(B_{b}\right)$. Note that $B_{a}=B_{b}$ is possible, but only if Lemma 2.7(ii) occurs.

For convenience, let $D_{i}^{\prime}:=G^{\prime}\left[D_{y_{i}}+\left\{a_{i}, b_{i}\right\}\right]$ for $i \in[3]$. We choose the cuts $S_{y_{i}}$ so that
(4) $D_{1}^{\prime} \cup D_{2}^{\prime} \cup D_{3}^{\prime}$ is maximal.

Since H is 2 -connected, D_{i}^{\prime}, for each $i \in[3]$, contains a path Y_{i} from a_{i} to b_{i} and through y_{i}. In addition, since $\left(G-y_{2}\right)-X$ is 2 -connected, for any $v \in V\left(D_{3}^{\prime}\right)-\left\{a_{3}, b_{3}, y_{3}\right\}, D_{3}^{\prime}-y_{3}$ contains a path from a_{3} to b_{3} through v.
(5) If $B_{a} \cap B_{b}=\emptyset$ then $\left|V\left(B_{a}\right)\right|=1$ or B_{a} is 2 -connected, and $\left|V\left(B_{b}\right)\right|=1$ or B_{b} is 2-connected. If $B_{a} \cap B_{b} \neq \emptyset$ then $B_{a}=B_{b}$ and $B_{a}-a_{3}$ is 2-connected.

First, suppose $B_{a} \cap B_{b}=\emptyset$. By symmetry, we only prove the claim for B_{a}. Suppose $\left|V\left(B_{a}\right)\right|>1$ and B_{a} is not 2-connected. Then B_{a} has a separation $\left(B_{1}, B_{2}\right)$ such that $\left|V\left(B_{1} \cap B_{2}\right)\right| \leq 1$. Since H is 2-connected, $\left|V\left(B_{1} \cap B_{2}\right)\right|=1$ and, for some permutation $i j k$ of $[3], a_{i} \in V\left(B_{1}\right)-V\left(B_{2}\right)$ and $a_{j}, a_{k} \in V\left(B_{2}\right)$. Replacing $S_{y_{i}}, D_{i}^{\prime}$ by $V\left(B_{1} \cap B_{2}\right) \cup\left\{b_{i}\right\}, D_{i}^{\prime} \cup B_{1}$, respectively, while keeping $S_{y_{j}}, D_{j}^{\prime}, S_{y_{k}}, D_{k}^{\prime}$ unchanged, we derive a contradiction to (4).

Now assume $B_{a} \cap B_{b} \neq \emptyset$. Then $B_{a}=B_{b}$ by definition, and $a_{1}=a_{2}=a_{3}$ by our assumption above. Suppose $B_{a}-a_{3}$ is not 2-connected. Then B_{a} has a 2-separation $\left(B_{1}, B_{2}\right)$ with $a_{3} \in V\left(B_{1} \cap B_{2}\right)$. First, suppose for some permutation $i j k$ of [3], $b_{i} \in V\left(B_{1}\right)-V\left(B_{2}\right)$ and $b_{j}, b_{k} \in V\left(B_{2}\right)$. Then replacing $S_{y_{i}}, D_{i}^{\prime}$ by $V\left(B_{1} \cap B_{2}\right), D_{i}^{\prime} \cup B_{1}$, respectively, while keeping $S_{y_{j}}, D_{j}^{\prime}, S_{y_{k}}, D_{k}^{\prime}$ unchanged, we derive a contradiction to (4). Therefore, we may assume $\left\{b_{1}, b_{2}, b_{3}\right\} \subseteq V\left(B_{1}\right)$. Since G is 5 -connected, there exists $r r^{\prime} \in E(G)$ such that $r \in V(X)-\left\{y_{3}, x_{2}\right\}$ and $r^{\prime} \in V\left(B_{2}-B_{1}\right)$. Let R be a path $B_{2}-\left(B_{1}-a_{3}\right)$ from a_{3} to r^{\prime}, and R^{\prime} a path in $B_{1}-B_{2}$ from b_{1} to b_{2}. Then $\left(R \cup r^{\prime} r \cup r X x_{1}\right) \cup\left(a_{3} Y_{3} y_{3} \cup y_{3} x_{2}\right) \cup a_{3} Y_{1} y_{1} \cup a_{3} Y_{2} y_{2} \cup$ $\left(y_{1} Y_{1} b_{1} \cup R^{\prime} \cup b_{2} Y_{2} y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $a_{3}, x_{1}, x_{2}, y_{1}, y_{2}$, a contradiction.
(6) $D_{y_{i}}$ is connected for $i \in[3]$.

Suppose $D_{y_{i}}$ is not connected for some $i \in[3]$, and let D be a component of $D_{y_{i}}$ not containing y_{i}. Since G is 5 -connected, there exists $r r^{\prime} \in E(G)$ such that $r \in V(X)-\left\{x_{2}, y_{3}\right\}$ and $r^{\prime} \in V(D)$.

Let R be a path in $G\left[D+a_{i}\right]$ from a_{i} to r^{\prime}, and R^{\prime} a path from b_{1} to b_{2} in $B_{b}-a_{3}$. By (5), let A_{1}, A_{2}, A_{3} be independent paths in B_{a} from a_{i} to a_{1}, a_{2}, a_{3}, respectively. Then $\left(R \cup r^{\prime} r \cup r X x_{1}\right) \cup\left(A_{1} \cup a_{1} Y_{1} y_{1}\right) \cup\left(A_{2} \cup a_{2} Y_{2} y_{2}\right) \cup\left(A_{3} \cup a_{3} Y_{3} y_{3} \cup y_{3} x_{2}\right) \cup\left(y_{1} Y_{1} b_{1} \cup R^{\prime} \cup b_{2} Y_{2} y_{2}\right) \cup$ $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $a_{i}, x_{1}, x_{2}, y_{1}, y_{2}$, a contradiction.
(7) If $a_{1}=a_{2}=a_{3}$ then $N\left(a_{3}\right) \cap V\left(X-\left\{x_{2}, y_{3}\right\}\right)=\emptyset$.

For, suppose $a_{1}=a_{2}=a_{3}$ and there exists $u \in N\left(a_{3}\right) \cap V\left(X-\left\{x_{2}, y_{3}\right\}\right)$. Let Q be a path in $B_{b}-a_{3}$ between b_{1} and b_{2}, and let P be a path in $D_{3}^{\prime}-b_{3}$ from a_{3} to y_{3}. Then $\left(a_{3} u \cup u X x_{1}\right) \cup\left(P \cup y_{3} x_{2}\right) \cup a_{3} Y_{1} y_{1} \cup a_{3} Y_{2} y_{2} \cup\left(y_{1} Y_{1} b_{1} \cup Q \cup b_{2} Y_{2} y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $a_{3}, x_{1}, x_{2}, y_{1}, y_{2}$, a contradiction.

We may assume that
(8) there exists $u \in V(X)-\left\{x_{1}, x_{2}, y_{3}\right\}$ such that $N(u)-\left\{y_{2}\right\} \nsubseteq V\left(X \cup D_{3}^{\prime}\right)$.

For, suppose no such vertex exists. Then G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=$ $\left\{a_{3}, b_{3}, x_{1}, x_{2}, y_{2}\right\}, X \cup D_{3}^{\prime} \subseteq G_{1}$, and $D_{1}^{\prime} \cup D_{2}^{\prime} \cup B_{a} \cup B_{b} \subseteq G_{2}$. Clearly, $\left|V\left(G_{2}\right)\right| \geq 7$ since $\left|N\left(y_{1}\right)\right| \geq 5$ and $y_{1} y_{2} \notin E(G)$. If $\left|V\left(G_{1}\right)\right| \geq 7$ then, by Lemma 2.4, (i) or (ii) or (iii) or (iv) holds. So we may assume $\left|V\left(G_{1}\right)\right|=6$. Then $X=x_{1} y_{3} x_{2}$ and $V\left(D_{y_{3}}\right)=\left\{y_{3}\right\}$. Hence, $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{3}\right\}\right] \cong K_{4}^{-}$; so (ii) holds.
(9) For all $u \in V(X)-\left\{x_{1}, x_{2}, y_{3}\right\}$ with $N(u)-\left\{y_{2}\right\} \nsubseteq V\left(X \cup D_{3}^{\prime}\right), N(u) \cap V\left(D_{3}^{\prime}-y_{3}\right)=\emptyset$.

For, suppose there exist $u \in V(X)-\left\{x_{1}, x_{2}, y_{3}\right\}$, $u_{1} \in\left(N(u)-\left\{y_{2}\right\}\right)-V\left(X \cup D_{3}^{\prime}\right)$, and $u_{2} \in N(u) \cap V\left(D_{3}^{\prime}-y_{3}\right)$. Recall (see before (5)) that there is a path Y_{3}^{\prime} in $D_{3}^{\prime}-y_{3}$ from a_{3} to b_{3} through u_{2}.

Suppose $u_{1} \in V\left(D_{y_{i}}\right)$ for some $i \in[2]$. Then $D_{i}^{\prime}-b_{i}$ (or $D_{i}^{\prime}-a_{i}$) has a path Y_{i}^{\prime} from u_{1} to a_{i} (or b_{i}) through y_{i}. If Y_{i}^{\prime} ends at a_{i} then let P_{a}, P_{b} be disjoint paths in $B_{a} \cup B_{b}$ from a_{1}, b_{3} to a_{2}, b_{3-i}, respectively; now $Y_{i}^{\prime} \cup P_{a} \cup Y_{3-i} \cup P_{b} \cup b_{3} Y_{3}^{\prime} u_{2} \cup u_{2} u u_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). So Y_{i}^{\prime} ends at b_{i}. Let P_{b}, P_{a} be disjoint paths in $B_{a} \cup B_{b}$ from b_{1}, a_{3-i} to b_{2}, a_{3}, respectively. Then $Y_{i}^{\prime} \cup P_{b} \cup Y_{3-i} \cup P_{a} \cup a_{3} Y_{3}^{\prime} u_{2} \cup u_{2} u u_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3).

Thus, $u_{1} \in V\left(B_{a} \cup B_{b}\right)$. By symmetry and (7), assume $u_{1} \in V\left(B_{b}\right)$. Note that $u_{1} \notin\left\{a_{3}, b_{3}\right\}$ (by the choice of u_{1}) and $B_{b}-a_{3}$ is 2 -connected (by (5)). Hence, $B_{b}-a_{3}$ has disjoint paths Q_{1}, Q_{2} from $\left\{u_{1}, b_{3}\right\}$ to $\left\{b_{1}, b_{2}\right\}$. By symmetry between b_{1} and b_{2}, we may assume Q_{1} is between u_{1} and b_{1} and Q_{2} is between b_{3} and b_{2}. Let P be a path in B_{a} from a_{1} to a_{2} (which is trivial if $\left.\left|V\left(B_{a}\right)\right|=1\right)$. Then $Q_{1} \cup u_{1} u u_{2} \cup u_{2} Y_{3}^{\prime} b_{3} \cup Q_{2} \cup Y_{2} \cup P \cup Y_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{y_{1}, y_{2}, u\right\}$, contradicting (3).
(10) For any $u \in V(X)-\left\{x_{1}, x_{2}, y_{3}\right\}$ with $N(u)-\left\{y_{2}\right\} \nsubseteq V\left(X \cup D_{3}^{\prime}\right)$, there exists $i \in[2]$ such that $N(u)-\left\{y_{2}\right\} \subseteq V\left(D_{i}^{\prime}\right)$ and $\left\{a_{i}, b_{i}\right\} \nsubseteq N(u)$.

To see this, let $u_{1}, u_{2} \in\left(N(u)-\left\{y_{2}\right\}\right)-V\left(X \cup D_{3}^{\prime}\right)$ be distinct, which exist by (9) (and since X is induced in $\left.G^{\prime}-x_{1} x_{2}\right)$. Suppose we may choose such u_{1}, u_{2} so that $\left\{u_{1}, u_{2}\right\} \nsubseteq V\left(D_{i}^{\prime}\right)$ for $i \in[2]$.

We claim that $\left\{u_{1}, u_{2}\right\} \nsubseteq V\left(B_{a}\right)$ and $\left\{u_{1}, u_{2}\right\} \nsubseteq V\left(B_{b}\right)$. Recall that if $B_{a} \cap B_{b} \neq \emptyset$ then $B_{a}=B_{b}$ and if $B_{a} \cap B_{b}=\emptyset$ then there is symmetry between B_{a} and B_{b}. So if the claim fails we may assume that $u_{1}, u_{2} \in V\left(B_{b}\right)$. Then by (5), $B_{b}-a_{3}$ is 2 -connected; so $B_{b}-a_{3}$ contains disjoint paths Q_{1}, Q_{2} from $\left\{u_{1}, u_{2}\right\}$ to $\left\{b_{1}, b_{2}\right\}$. If $B_{a}=B_{b}$, let $P=a_{3}$. If $B_{a} \cap B_{b}=\emptyset$, then let P be a path in B_{a} from a_{1} to a_{2}. Now $Q_{1} \cup u_{1} u u_{2} \cup Q_{2} \cup Y_{1} \cup P \cup Y_{2}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3).

Next, we show that $\left\{a_{i}, b_{i}\right\} \nsubseteq N(u)$ for $i \in[2]$. For, suppose $u_{1}=a_{i}$ and $u_{2}=b_{i}$ for some $i \in[2]$. Then, since $\left\{u_{1}, u_{2}\right\} \cap\left\{a_{3}, b_{3}\right\}=\emptyset,\left|V\left(B_{a}\right)\right| \geq 2$ and $\left|V\left(B_{b}\right)\right| \geq 2$. By (5), let P_{1}, P_{2} be independent paths in B_{a} from a_{i} to a_{3-i}, a_{3}, respectively, and Q_{1}, Q_{2} be independent paths in B_{b} from b_{i} to b_{3-i}, b_{3}, respectively. Now $u a_{i} \cup u b_{i} \cup a_{i} Y_{i} y_{i} \cup b_{i} Y_{i} y_{i} \cup\left(y_{i} x_{1} \cup x_{1} X u\right) \cup\left(P_{1} \cup\right.$ $\left.Y_{3-i} \cup Q_{1}\right) \cup\left(P_{2} \cup a_{3} Y_{3} y_{3}\right) \cup\left(Q_{2} \cup b_{3} Y_{3} y_{3}\right) \cup u X y_{3} \cup y_{i} x_{2} y_{3}$ is a $T K_{5}$ in G^{\prime} with branch vertices $a_{i}, b_{i}, u, y_{i}, y_{3}$, a contradiction.

Suppose $u_{1} \in V\left(B_{a}-a_{3}\right)$ and $u_{2} \in V\left(B_{b}-b_{3}\right)$. Then $\left|V\left(B_{a}\right)\right| \geq 2$ and $\left|V\left(B_{b}\right)\right| \geq 2$. Let Y_{3}^{\prime} be a path in $D_{3}^{\prime}-y_{3}$ from a_{3} to b_{3}. First, assume that $u_{1} \in\left\{a_{1}, a_{2}\right\}$ or $u_{2} \in\left\{b_{1}, b_{2}\right\}$. By symmetry, we may assume $u_{1}=a_{1}$. So $u_{2} \neq b_{1}$. By (5), $B_{a}-a_{1}$ contains a path P from a_{2} to a_{3}, and B_{b} contains disjoint paths Q_{1}, Q_{2} from $\left\{b_{2}, b_{3}\right\}$ to b_{1}, u_{2}, respectively. Then $Y_{1} \cup Q_{1} \cup Y_{2} \cup P \cup Y_{3}^{\prime} \cup Q_{2} \cup u_{1} u u_{2}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). So $u_{1} \notin\left\{a_{1}, a_{2}\right\}$ and $u_{2} \notin\left\{b_{1}, b_{2}\right\}$. Then by (5) and symmetry, we may assume that B_{a} contains disjoint paths P_{1}, P_{2} from u_{1}, a_{3} to a_{1}, a_{2}, respectively. By (5) again, B_{b} contains disjoint paths Q_{1}, Q_{2} from b_{1}, u_{2}, respectively to $\left\{b_{2}, b_{3}\right\}$. Now $P_{1} \cup Y_{1} \cup Q_{1} \cup Y_{2} \cup P_{2} \cup Y_{3}^{\prime} \cup Q_{2} \cup u_{2} u u_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3).

Therefore, we may assume $u_{1} \in V\left(D_{y_{i}}\right)$ for some $i \in[2]$. By symmetry, we may assume that $u_{1} \in V\left(D_{y_{1}}\right)$ and $D_{1}^{\prime}-a_{1}$ contains a path R_{1} from u_{1} to b_{1} and through y_{1}. Then $u_{2} \notin V\left(D_{1}^{\prime}\right)$ as we assumed $\left\{u_{1}, u_{2}\right\} \nsubseteq V\left(D_{1}^{\prime}\right)$.

Suppose $u_{2} \in V\left(D_{y_{2}}\right)$. If $D_{2}^{\prime}-a_{2}$ contains a path R_{2} from u_{2} to b_{2} through y_{2} then let Q be a path in B_{b} from b_{1} to b_{2}; now $R_{1} \cup Q \cup R_{2} \cup u_{2} u u_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). So $D_{2}^{\prime}-b_{2}$ contains a path R_{2} from u_{2} to a_{2} and through y_{2}. Now let P be a path in B_{a} from a_{2} to a_{3}, Q be a path in $B_{b}-a_{3}$ from b_{1} to b_{3}. Let Y_{3}^{\prime} be a path in $D_{3}^{\prime}-y_{3}$ from a_{3} to b_{3}. Then $R_{1} \cup Q \cup Y_{3}^{\prime} \cup P \cup R_{2} \cup u_{2} u u_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3).

Finally, assume $u_{2} \in V\left(B_{a} \cup B_{b}\right)$. If $u_{2} \in V\left(B_{b}\right)$ then, by (5), let Q_{1}, Q_{2} be disjoint paths in $B_{b}-a_{3}$ from b_{1}, u_{2}, respectively, to $\left\{b_{2}, b_{3}\right\}$, and let P be a path in B_{a} from a_{2} to a_{3}; now $u_{2} u u_{1} \cup R_{1} \cup Q_{1} \cup Q_{2} \cup Y_{2} \cup P \cup Y_{3}^{\prime}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). So $u_{2} \notin V\left(B_{b}\right)$ and $u_{2} \in V\left(B_{a}-a_{1}\right)$; hence $B_{a} \cap B_{b}=\emptyset$. Let P be a path in B_{a} from u_{2} to a_{2} and Q be a path in B_{b} from b_{1} to b_{2}. Then $u_{2} u u_{1} \cup R_{1} \cup Q \cup Y_{2} \cup P$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). This completes the proof of (10).

By (10) and by symmetry, let $u \in V(X)-\left\{x_{1}, x_{2}, y_{3}\right\}$ and $u_{1}, u_{2} \in N(u)$ such that $u_{1} \in V\left(D_{y_{1}}\right)$ and $u_{2} \in V\left(D_{1}^{\prime}\right)$. If $G\left[D_{1}^{\prime}+u\right]$ contains independent paths R_{1}, R_{2} from u to a_{1}, b_{1}, respectively, such that $y_{1} \in V\left(R_{1} \cup R_{2}\right)$, then let P be a path in B_{a} between a_{1} and a_{2} and Q be a path in $B_{b}-a_{3}$ between b_{1} and b_{2}; now $R_{1} \cup P \cup Y_{2} \cup Q \cup R_{2}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). So such paths do not exist. Then in the 2-connected graph $D_{1}^{*}:=G\left[D_{1}^{\prime}+u\right]+\left\{c, c a_{1}, c b_{1}\right\}$ (by adding a new vertex c), there is no
cycle containing $\left\{c, u, y_{1}\right\}$. Hence, by Lemma 2.7, D_{1}^{*} has a 2-cut T separating y_{1} from $\{u, c\}$, and $T \cap\{u, c\}=\emptyset$.

We choose u, u_{1}, u_{2} and T so that the T-bridge of D_{1}^{*} containing y_{1}, denoted B, is minimal. Then $B-T$ contains no neighbor of $X-\left\{x_{1}, x_{2}\right\}$. Hence, G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{x_{1}, x_{2}, y_{2}\right\} \cup V(T), B \subseteq G_{1}$, and $X \cup D_{2}^{\prime} \cup D_{3}^{\prime} \subseteq G_{2}$. Clearly, $\left|V\left(G_{2}\right)\right| \geq 7$. Since $y_{1} y_{2} \notin E(G)$ and G is 5 -connected, $\left|V\left(G_{1}\right)\right| \geq 7$. So (i) or (ii) or (iii) or (iv) holds by Lemma 2.4 .

4 An intermediate substructure

By Lemma 3.2, to prove Theorem 1.1 it suffices to deal with the second part of (iv) of Lemma 3.2. Thus, let G be a 5 -connected nonplanar graph and $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$with $y_{1} y_{2} \notin E(G)$, let $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}$ be distinct, and let P be an induced path in $G-x_{1} x_{2}$ from x_{1} to x_{2} such that $y_{1}, y_{2} \notin V(P)$, $w_{1}, w_{2}, w_{3} \in V(P)$, and $\left(G-y_{2}\right)-P$ is 2 -connected.

Without loss of generality, assume $x_{1}, w_{1}, w_{2}, w_{3}, x_{2}$ occur on P in order. Let

$$
X:=x_{1} P w_{1} \cup w_{1} y_{2} w_{3} \cup w_{3} P x_{2}
$$

and let

$$
G^{\prime}:=G-\left\{y_{2} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\} .
$$

Then X is an induced path in $G^{\prime}-x_{1} x_{2}, y_{1} \notin V(X)$, and $G^{\prime}-X$ is 2-connected. For convenience, we record this situation by calling ($G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}$) a 9-tuple.

In this section, we obtain a substructure of G^{\prime} in terms of X and seven additional paths A, B, C, P, Q, Y, Z in G^{\prime}. See Figure 1, where X is the path in boldface and Y, Z are not shown. First, we find two special paths Y, Z in G^{\prime} with Lemma 4.1 below. We will then use Lemma 4.2 to find the paths A, B, C, and use Lemma 4.3 to find the paths P and Q. In the next section, we will use this substructure to find the desired $T K_{5}$ in G or G^{\prime}.

Lemma 4.1 Let $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}\right)$ be a 9-tuple. Then one of the following holds:
(i) G contains $T K_{5}$ in which y_{2} is not a branch vertex, or G^{\prime} contains $T K_{5}$.
(ii) $G-y_{2}$ contains K_{4}^{-}.
(iii) G has a 5-separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{y_{2}, a_{1}, a_{2}, a_{3}, a_{4}\right\}, G_{2}$ is the graph obtained from the edge-disjoint union of the 8 -cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding y_{2} and the edges $y_{2} b_{i}$ for $i \in[4]$.
(iv) There exist $z_{1} \in V\left(x_{1} X y_{2}\right)-\left\{x_{1}, y_{2}\right\}, z_{2} \in V\left(x_{2} X y_{2}\right)-\left\{x_{2}, y_{2}\right\}$ such that $H:=G^{\prime}-$ $\left(V\left(X-\left\{y_{2}, z_{1}, z_{2}\right\}\right) \cup E(X)\right)$ has disjoint paths Y, Z from y_{1}, z_{1} to y_{2}, z_{2}, respectively.

Proof. Let K be the graph obtained from $G-\left\{x_{1}, x_{2}, y_{2}\right\}$ by contracting $x_{i} X y_{2}-\left\{x_{i}, y_{2}\right\}$ to the new vertex u_{i}, for $i \in[2]$. Note that K is 2 -connected; since G is 5 -connected, X is induced in $G^{\prime}-x_{1} x_{2}$, and $G-X$ is 2 -connected. We may assume that
(1) there exists a collection \mathcal{A} of subsets of $V(K)-\left\{u_{1}, u_{2}, w_{2}, y_{1}\right\}$ such that $\left(K, \mathcal{A}, u_{1}, y_{1}, u_{2}, w_{2}\right)$ is 3 -planar.

For, suppose this is not the case. Then by Lemma 2.1, K contains disjoint paths, say Y, U, from y_{1}, u_{1} to w_{2}, u_{2}, respectively. Let v_{i} denote the neighbor of u_{i} in the path U, and let $z_{i} \in V\left(x_{i} X y_{2}\right)-\left\{x_{i}, y_{2}\right\}$ be a neighbor of v_{i} in G. Then $Z:=\left(U-\left\{u_{1}, u_{2}\right\}\right)+\left\{z_{1}, z_{2}, z_{1} v_{1}, z_{2} v_{2}\right\}$ is a path between z_{1} and z_{2}. Now $Y+\left\{y_{2}, y_{2} w_{2}\right\}, Z$ are the desired paths for (iv). So we may assume (1).

Since $G-X$ is 2 -connected, $\left|N_{K}(A) \cap\left\{u_{1}, u_{2}, w_{2}\right\}\right| \leq 1$ for all $A \in \mathcal{A}$. Let $p(K, \mathcal{A})$ be the graph obtained from K by (for each $A \in \mathcal{A}$) deleting A and adding new edges joining every pair of distinct vertices in $N_{K}(A)$. Since G is 5 -connected and $G-X$ is 2-connected, we may assume that $p(K, \mathcal{A})-\left\{u_{1}, u_{2}\right\}$ is a 2 -connected plane graph, and for each $A \in \mathcal{A}$ with $N_{K}(A) \cap\left\{u_{1}, u_{2}\right\} \neq \emptyset$ the edge joining vertices of $N_{K}(A)-\left\{u_{1}, u_{2}\right\}$ occur on the outer cycle D of $p(K, \mathcal{A})-\left\{u_{1}, u_{2}\right\}$. Note that $y_{1}, w_{2} \in V(D)$.

Let $t_{1} \in V(D)$ with $t_{1} D y_{1}$ minimal such that $u_{1} t_{1} \in E(p(K, \mathcal{A}))$; and let $t_{2} \in V(D)$ with $y_{1} D t_{2}$ minimal such that $u_{2} t_{2} \in E\left(p(K, \mathcal{A})\right.$). (So $t_{1}, y_{1}, t_{2}, w_{2}$ occur on D in clockwise order.) Since K is 2 -connected and X is induced in $G^{\prime}-x_{1} x_{2}$, there exist $z_{1} \in V\left(x_{1} X y_{2}\right)-\left\{x_{1}, y_{2}\right\}$ and independent paths R_{1}, R_{1}^{\prime} in G from z_{1} to D and internally disjoint from $V(p(K, \mathcal{A})) \cup V(X)$, such that R_{1} ends at t_{1} and R_{1}^{\prime} ends at some vertex $t_{1}^{\prime} \neq t_{1}$, and $w_{2}, t_{1}^{\prime}, t_{1}, y_{1}$ occur on D in clockwise order. Similarly, there exist $z_{2} \in V\left(x_{2} X y_{2}\right)-\left\{x_{2}, y_{2}\right\}$ and independent paths R_{2}, R_{2}^{\prime} in G from z_{2} to D and internally disjoint from $V(p(K, \mathcal{A})) \cup V(X)$, such that R_{2} ends at t_{2}, R_{2}^{\prime} ends at some vertex $t_{2}^{\prime} \neq t_{2}$, and $y_{1}, t_{2}, t_{2}^{\prime}, w_{2}$ occur on D in clockwise order.

We may assume that
(2) $K-\left\{u_{1}, u_{2}\right\}$ has no 2-separation $\left(K^{\prime}, K^{\prime \prime}\right)$ such that $V\left(K^{\prime} \cap K^{\prime \prime}\right) \subseteq V\left(t_{1} D t_{2}\right),\left|V\left(K^{\prime}\right)\right| \geq 3$, and $V\left(t_{2} D t_{1}\right) \subseteq V\left(K^{\prime \prime}\right)$.

For, suppose such a separation $\left(K^{\prime}, K^{\prime \prime}\right)$ does exist in $K-\left\{u_{1}, u_{2}\right\}$. Then by the definition of u_{1}, u_{2}, we see that G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=V\left(K^{\prime} \cap K^{\prime \prime}\right) \cup\left\{x_{1}, x_{2}, y_{2}\right\}$, $K^{\prime} \subseteq V\left(G_{1}\right)$ and $K^{\prime \prime} \cup X \subseteq G_{2}$. Note that $G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a triangle in $G,\left|V\left(G_{2}\right)\right| \geq 7$, and $\left|V\left(G_{1}\right)\right| \geq 6$ (as $\left|V\left(K^{\prime}\right)\right| \geq 3$). If $\left|V\left(G_{1}\right)\right| \geq 7$ then by Lemma 2.4, (i) or (ii) or (iii) holds. (Note that if (iv) of Lemma 2.4 holds then G^{\prime} has a $T K_{5}$; so (i) holds.) So assume $\left|V\left(G_{1}\right)\right|=6$, and let $v \in V\left(G_{1}-G_{2}\right)$. Since G is 5 -connected, $N(v)=V\left(G_{1} \cap G_{2}\right)$. In particular, $v \neq y_{1}$ as $y_{1} y_{2} \notin E(G)$. Then $G\left[\left\{v, x_{1}, x_{2}, y_{1}\right\}\right]$ contains K_{4}^{-}, and (ii) holds. So we may assume (2).

Next we may assume that
(3) each neighbor of x_{1} is contained in $V(X)$, or $V\left(t_{1} D y_{1}\right)$, or some $A \in \mathcal{A}$ with $u_{1} \in$ $N_{K}(A)$, and each neighbor of x_{2} is contained $V(X)$, or $V\left(y_{1} D t_{2}\right)$, or some $A \in \mathcal{A}$ with $u_{2} \in N_{K}(A)$.

For, otherwise, we may assume by symmetry that there exists $a \in N\left(x_{1}\right)-V(X)$ such that $a \notin V\left(t_{1} D y_{1}\right)$ and $a \notin A$ for $A \in \mathcal{A}$ with $u_{1} \in N_{K}(A)$. Let $a^{\prime}=a$ and $S=a$ if $a \notin A$ for all $A \in \mathcal{A}$. When $a \in A$ for some $A \in \mathcal{A}$ then by (2), there exists $a^{\prime} \in N_{K}(A)-V\left(t_{1} D t_{2}\right)$ and let S be a path in $G\left[A+a^{\prime}\right]$ from a to a^{\prime}. By (2) again, there is a path T from a^{\prime} to some $u \in V\left(t_{2} D t_{1}\right)-\left\{t_{1}, t_{2}\right\}$ in $p(K, \mathcal{A})-\left\{u_{1}, u_{2}, y_{2}\right\}-t_{1} D t_{2}$. Then $t_{1} D t_{2} \cup R_{1} \cup R_{2}$ and $R_{2}^{\prime} \cup t_{2}^{\prime} D u \cup T$ give independent paths T_{1}, T_{2}, T_{3} in $G-\left(X-\left\{z_{1}, z_{2}\right\}\right)$ with T_{1}, T_{2} from y_{1} to z_{1}, z_{2}, respectively,
and T_{3} from a^{\prime} to z_{2}. Hence, $z_{2} X x_{2} \cup z_{2} X y_{2} \cup T_{2} \cup\left(T_{3} \cup S \cup a x_{1}\right) \cup\left(T_{1} \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$; so (i) holds.

Label the vertices of $w_{2} D y_{1}$ and $x_{1} X y_{2}$ such that $w_{2} D y_{1}=v_{1} \ldots v_{k}$ and $x_{1} X y_{2}=v_{k+1} \ldots v_{n}$, with $v_{1}=w_{2}, v_{k}=y_{1}, v_{k+1}=x_{1}$ and $v_{n}=y_{2}$. Let G_{1} denote the union of $x_{1} X y_{2}$, $\left\{v_{1}, \ldots, v_{k}\right\}, G\left[A \cup\left(N_{K}(A)-u_{1}\right)\right]$ for $A \in \mathcal{A}$ with $u_{1} \in N_{K}(A)$, all edges of G^{\prime} from $x_{1} X y_{2}$ to $\left\{v_{1}, \ldots, v_{k}\right\}$, and all edges of G^{\prime} from $x_{1} X y_{2}$ to A for $A \in \mathcal{A}$ with $u_{1} \in N_{K}(A)$. Note that G_{1} is $\left(4,\left\{v_{1}, \ldots, v_{n}\right\}\right)$-connected. Similarly, let $y_{1} D w_{2}=z_{1} \ldots z_{l}$ and $x_{2} X y_{2}=z_{l+1} \ldots z_{m}$, with $z_{1}=w_{2}, z_{l}=y_{1}, z_{l+1}=x_{2}$ and $z_{m}=y_{2}$. Let G_{2} denote the union of $y_{2} X x_{2},\left\{z_{1}, \ldots, z_{l}\right\}$, $G\left[A \cup\left(N_{K}(A)-u_{2}\right)\right]$ for $A \in \mathcal{A}$ with $u_{2} \in N_{K}(A)$, all edges of G^{\prime} from $y_{2} X x_{2}$ to $\left\{z_{1}, \ldots, z_{l}\right\}$, and all edges of G^{\prime} from $y_{2} X x_{2}$ to A for $A \in \mathcal{A}$ with $u_{2} \in N_{K}(A)$. Note that G_{2} is $\left(4,\left\{z_{1}, \ldots, z_{m}\right\}\right)$ connected.

If both $\left(G_{1}, v_{1}, \ldots, v_{n}\right)$ and $\left(G_{2}, z_{1}, \ldots, z_{m}\right)$ are planar then $G-y_{2}$ is planar; so (i) or (ii) or (iii) holds by Lemma 2.5. Hence, we may assume by symmetry that $\left(G_{1}, v_{1}, \ldots, v_{n}\right)$ is not planar. Then by Lemma 2.2, there exist $1 \leq q<r<s<t \leq n$ such that G_{1} has disjoint paths Q_{1}, Q_{2} from v_{q}, v_{r} to v_{s}, v_{t}, respectively, and internally disjoint from $\left\{v_{1}, \ldots, v_{n}\right\}$.

Since $\left(K, u_{1}, y_{1}, u_{2}, w_{2}\right)$ is 3-planar, it follows from the definition of G_{1} that $q, r \leq k$ and $s, t \geq k+1$. Note that the paths $y_{1} D t_{2}, t_{2}^{\prime} D v_{q}, v_{r} D y_{1}$ give rise to independent paths P_{1}, P_{2}, P_{3} in $K-\left\{u_{1}, u_{2}\right\}$, with P_{1} from y_{1} to t_{2}, P_{2} from t_{2}^{\prime} to v_{q}, and P_{3} from v_{r} to y_{1}. Therefore, $z_{2} X x_{2} \cup z_{2} X y_{2} \cup\left(R_{2} \cup P_{1}\right) \cup\left(R_{2}^{\prime} \cup P_{2} \cup Q_{1} \cup v_{s} X x_{1}\right) \cup\left(P_{3} \cup Q_{2} \cup v_{t} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. So (i) holds.

Conclusion (iv) of Lemma 4.1 motivates the concept of 11-tuple. We say that (G, X, x_{1}, x_{2}, $\left.y_{1}, y_{2}, w_{1}, w_{2}, w_{3}, z_{1}, z_{2}\right)$ is an 11-tuple if

- $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}\right)$ is a 9-tuple, and $z_{i} \in V\left(x_{i} X y_{2}\right)-\left\{x_{i}, y_{2}\right\}$ for $i \in[2]$,
- $H:=G^{\prime}-\left(V\left(X-\left\{y_{2}, z_{1}, z_{2}\right\}\right) \cup E(X)\right)$ contains disjoint paths Y, Z from y_{1}, z_{1} to y_{2}, z_{2}, respectively, and
- subject to the above conditions, $z_{1} X z_{2}$ is maximal.

Since G is 5 -connected and X is induced in $G^{\prime}-x_{1} x_{2}$, each $z_{i}(i \in[2])$ has at least two neighbors in $H-\left\{y_{2}, z_{1}, z_{2}\right\}$ (which is 2 -connected). Note that y_{2} has exactly one neighbor $H-\left\{y_{2}, z_{1}, z_{2}\right\}$, namely, w_{2}. So $H-y_{2}$ is 2 -connected.

Lemma 4.2 Let $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}, z_{1}, z_{2}\right)$ be an 11-tuple and Y, Z be disjoint paths in $H:=G^{\prime}-\left(V\left(X-\left\{y_{2}, z_{1}, z_{2}\right\}\right) \cup E(X)\right)$ from y_{1}, z_{1} to y_{2}, z_{2}, respectively. Then G contains a $T K_{5}$ in which y_{2} is not a branch vertex, or G^{\prime} contains $T K_{5}$, or
(i) for $i \in[2]$, H has no path through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order (so $y_{1} z_{i} \notin E(G)$), and
(ii) there exists $i \in[2]$ such that H contains independent paths A, B, C, with A and C from z_{i} to y_{1}, and B from y_{2} to z_{3-i}.

Proof. First, suppose, for some $i \in[2]$, there is a path P in H from z_{i} to y_{2} such that $z_{i}, z_{3-i}, y_{1}, y_{2}$ occur on P in order. Then $z_{3-i} X x_{3-i} \cup z_{3-i} X y_{2} \cup\left(z_{3-i} P z_{i} \cup z_{i} X x_{i}\right) \cup z_{3-i} P y_{1} \cup$ $y_{1} P y_{2} \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$. So we may assume
that such P does not exist. Hence by the existence of Y, Z in H, we have $y_{1} z_{1}, y_{1} z_{2} \notin E(G)$, and (i) holds.

So from now on we may assume that (i) holds. For each $i \in[2]$, let H_{i} denote the graph obtained from H by duplicating z_{i} and y_{1}, and let z_{i}^{\prime} and y_{1}^{\prime} denote the duplicates of z_{i} and y_{1}, respectively. So in H_{i}, y_{1} and y_{1}^{\prime} are not adjacent, and have the same set of neighbors, namely $N_{H}\left(y_{1}\right)$; and the same holds for z_{i} and z_{i}^{\prime}.

First, suppose for some $i \in[2], H_{i}$ contains pairwise disjoint paths $A^{\prime}, B^{\prime}, C^{\prime}$ from $\left\{z_{i}, z_{i}^{\prime}, y_{2}\right\}$ to $\left\{y_{1}, y_{1}^{\prime}, z_{3-i}\right\}$, with $z_{i} \in V\left(A^{\prime}\right), z_{i}^{\prime} \in V\left(C^{\prime}\right)$ and $y_{2} \in V\left(B^{\prime}\right)$. If $z_{3-i} \notin V\left(B^{\prime}\right)$, then after identifying y_{1} with y_{1}^{\prime} and z_{i} with z_{i}^{\prime}, we obtain from $A^{\prime} \cup B^{\prime} \cup C^{\prime}$ a path in H from z_{3-i} to y_{2} through z_{i}, y_{1} in order, contradicting our assumption that (i) holds. Hence $z_{3-i} \in V\left(B^{\prime}\right)$. Then we get the desired paths for $(i i)$ from $A^{\prime} \cup B^{\prime} \cup C^{\prime}$ by identifying y_{1} with y_{1}^{\prime} and z_{i} with z_{i}^{\prime}.

So we may assume that for each $i \in[2], H_{i}$ does not contain three pairwise disjoint paths from $\left\{y_{2}, z_{i}, z_{i}^{\prime}\right\}$ to $\left\{y_{1}, y_{1}^{\prime}, z_{3-i}\right\}$. Then H_{i} has a separation $\left(H_{i}^{\prime}, H_{i}^{\prime \prime}\right)$ such that $\left|V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)\right|=2$, $\left\{y_{2}, z_{i}, z_{i}^{\prime}\right\} \subseteq V\left(H_{i}^{\prime}\right)$ and $\left\{y_{1}, y_{1}^{\prime}, z_{3-i}\right\} \subseteq V\left(H_{i}^{\prime \prime}\right)$.

We claim that $y_{1}, y_{2}, y_{1}^{\prime}, z_{i}^{\prime}, z_{1}, z_{2} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$ for $i \in[2]$. Note that $\left\{y_{1}, y_{1}^{\prime}\right\} \neq V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$, since otherwise y_{1} would be a cut vertex in H separating z_{3-i} from $\left\{y_{2}, z_{i}\right\}$. Now suppose one of y_{1}, y_{1}^{\prime} is in $V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$; then since y_{1}, y_{1}^{\prime} are duplicates, the vertex in $V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)-\left\{y_{1}, y_{1}^{\prime}\right\}$ is a cut vertex in H separating $\left\{y_{1}, z_{3-i}\right\}$ from $\left\{y_{2}, z_{i}\right\}$, a contradiction. So $y_{1}, y_{1}^{\prime} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$. Similar argument shows that $z_{i}, z_{i}^{\prime} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$. Since $H-y_{2}$ is 2-connected, $y_{2} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$. Since $H-\left\{z_{3-i}, y_{2}\right\}$ is 2-connected, $z_{3-i} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$.

For $i \in[2]$, let $V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)=\left\{s_{i}, t_{i}\right\}$, and let F_{i}^{\prime} (respectively, $F_{i}^{\prime \prime}$) be obtained from H_{i}^{\prime} (respectively, $H_{i}^{\prime \prime}$) by identifying z_{i}^{\prime} with z_{i} (respectively, y_{1}^{\prime} with y_{1}). Then $\left(F_{i}^{\prime}, F_{i}^{\prime \prime}\right)$ is a 2-separation in H such that $V\left(F_{i}^{\prime} \cap F_{i}^{\prime \prime}\right)=\left\{s_{i}, t_{i}\right\},\left\{y_{2}, z_{i}\right\} \subseteq V\left(F_{i}^{\prime}\right)-\left\{s_{i}, t_{i}\right\}$, and $\left\{y_{1}, z_{3-i}\right\} \subseteq$ $V\left(F_{i}^{\prime \prime}\right)-\left\{s_{i}, t_{i}\right\}$. Let Z_{1}, Y_{2} denote the $\left\{s_{1}, t_{1}\right\}$-bridges of F_{1}^{\prime} containing z_{1}, y_{2}, respectively; and let Z_{2}, Y_{1} denote the $\left\{s_{1}, t_{1}\right\}$-bridges of $F_{1}^{\prime \prime}$ containing z_{2}, y_{1}, respectively.

We may assume $Y_{1}=Z_{2}$ or $Y_{2}=Z_{1}$. For, suppose $Y_{1} \neq Z_{2}$ and $Y_{2} \neq Z_{1}$. Since $H-y_{2}$ is 2-connected, there exist independent P_{1}, Q_{1} in Z_{1} from z_{1} to s_{1}, t_{1}, respectively, independent paths P_{2}, Q_{2} in Z_{2} from z_{2} to s_{1}, t_{1}, respectively, independent paths P_{3}, Q_{3} in Y_{1} from y_{1} to s_{1}, t_{1}, respectively, and a path S in Y_{2} from y_{2} to one of $\left\{s_{1}, t_{1}\right\}$ and avoiding the other, say avoiding t_{1}. Then $z_{1} X x_{1} \cup z_{1} X y_{2} \cup y_{2} x_{1} \cup P_{1} \cup S \cup\left(P_{3} \cup y_{1} x_{1}\right) \cup\left(Q_{2} \cup Q_{1}\right) \cup P_{2} \cup z_{2} X y_{2} \cup$ $\left(z_{2} X x_{2} \cup x_{2} x_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $s_{1}, x_{1}, y_{2}, z_{1}, z_{2}$.

Indeed, $Y_{1}=Z_{2}$. For, if $Y_{1} \neq Z_{2}$ then $Y_{2}=Z_{1}, Y_{2}-\left\{s_{1}, t_{1}\right\}$ has a path from y_{2} to z_{1}, and $Y_{1} \cup Z_{2}$ has two independent paths from y_{1} to z_{2} (since $H-y_{2}$ is 2-connected). Now these three paths contradict the existence of the cut $\left\{s_{2}, t_{2}\right\}$ in H.

Then $\left\{s_{2}, t_{2}\right\} \cap V\left(Y_{1}-\left\{s_{1}, t_{1}\right\}\right) \neq \emptyset$. Without loss of generality, we may assume that $t_{2} \in$ $V\left(Y_{1}\right)-\left\{s_{1}, t_{1}\right\}$. Suppose $Y_{2}=Z_{1}$. Then $s_{2} \in V\left(Y_{2}\right)-\left\{s_{1}, t_{1}\right\}$ and we may assume that in H, $\left\{s_{2}, t_{2}\right\}$ separates $\left\{s_{1}, y_{1}, z_{1}\right\}$ from $\left\{t_{1}, y_{2}, z_{2}\right\}$. Hence, in Y_{1}, t_{2} separates $\left\{y_{1}, s_{1}\right\}$ from $\left\{z_{2}, t_{1}\right\}$, and in Y_{2}, s_{2} separates $\left\{z_{1}, s_{1}\right\}$ from $\left\{y_{2}, t_{1}\right\}$. But this contradicts the existence of the paths Y and Z in H. So $Y_{2} \neq Z_{1}$. Since $H-y_{2}$ is 2-connected and $N_{G^{\prime}}\left(y_{2}\right)=\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}$, we must have $s_{2}=w_{2} \in\left\{s_{1}, t_{1}\right\}$. By symmetry, we may assume that $s_{2}=w_{2}=s_{1}$.

Let $Y_{1}^{\prime}, Z_{2}^{\prime}$ be the $\left\{s_{2}, t_{2}\right\}$-bridge of Y_{1} containing y_{1}, z_{2}, respectively. Then $t_{1} \notin V\left(Z_{2}^{\prime}\right)$; for, otherwise, $H-\left\{s_{2}, t_{2}\right\}$ would contain a path from z_{2} to z_{1}, a contradiction. Therefore, because of the paths Y and $Z, t_{1} \in V\left(Y_{1}^{\prime}\right)$ and Y_{1}^{\prime} contains disjoint paths R_{1}, R_{2} from $s_{2}=s_{1}, t_{1}$ to y_{1}, t_{2}, respectively. Since $H-y_{2}$ is 2 -connected, Z_{1} has independent P_{1}, Q_{1} from z_{1} to $s_{2}=s_{1}$, t_{1},
respectively, and Z_{2}^{\prime} has independent paths P_{2}, Q_{2} from z_{2} to $s_{2}=s_{1}, t_{2}$, respectively. Now $z_{1} X x_{1} \cup z_{1} X y_{2} \cup y_{2} x_{1} \cup P_{1} \cup s_{1} y_{2} \cup\left(R_{1} \cup y_{1} x_{1}\right) \cup P_{2} \cup\left(Q_{2} \cup R_{2} \cup Q_{1}\right) \cup z_{2} X y_{2} \cup\left(z_{2} X x_{2} \cup x_{2} x_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $s_{1}, x_{1}, y_{2}, z_{1}, z_{2}$.

Lemma 4.3 Let $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}, z_{1}, z_{2}\right)$ be an 11-tuple and Y, Z be disjoint paths in $H:=G^{\prime}-V\left(X-\left\{y_{2}, z_{1}, z_{2}\right\} \cup E(X)\right)$ from y_{1}, z_{1} to y_{2}, z_{2}, respectively. Then G contains a $T K_{5}$ in which y_{2} is not a branch vertex or G^{\prime} contains $T K_{5}$, or
(i) there exist $i \in[2]$ and independent paths A, B, C in H, with A and C from z_{i} to y_{1}, and B from y_{2} to z_{3-i},
(ii) for each $i \in[2]$ satisfying $(i), z_{3-i} x_{3-i} \in E(X)$, and
(iii) H contains two disjoint paths from $V\left(B-y_{2}\right)$ to $V(A \cup C)-\left\{y_{1}, z_{i}\right\}$ and internally disjoint from $A \cup B \cup C$, with one ending in A and the other ending in C.

Proof. By Lemma 4.2, we may assume that
(1) for each $i \in[2], H$ has no path through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order (so $y_{1} z_{i} \notin E(G)$), and
(2) there exist $i \in[2]$ and independent paths A, B, C in H, with A and C from z_{i} to y_{1}, and B from y_{2} to z_{3-i}.

Let $J(A, C)$ denote the $(A \cup C)$-bridge of H containing B, and $L(A, C)$ denote the union of $(A \cup C)$-bridges of H each of which intersects both $A-\left\{y_{1}, z_{i}\right\}$ and $C-\left\{y_{1}, z_{i}\right\}$. We choose A, B, C such that the following are satisfied in the order listed:
(a) A, B, C are induced paths in H,
(b) whenever possible, $J(A, C) \subseteq L(A, C)$,
(c) $J(A, C)$ is maximal, and
(d) $L(A, C)$ is maximal.

We now show that (ii) and (iii) hold even with the restrictions (a), (b), (c) and (d) above. Let B^{\prime} denote the union of B and the B-bridges of H not containing $A \cup C$.
(3) If (iii) holds then (ii) holds.

Suppose (iii) holds. Let $V(P \cap B)=\{p\}, V(Q \cap B)=\{q\}, V(P \cap C)=\{c\}$ and $V(Q \cap A)=\{a\}$. By the symmetry between A and C, we may assume that y_{2}, p, q, z_{3-i} occur on B in order. We may further choose P, Q so that $p B z_{3-i}$ is maximal.

To prove (ii), suppose there exists $x \in V\left(z_{3-i} X x_{3-i}\right)-\left\{x_{3-i}, z_{3-i}\right\}$. If $N(x) \cap V(H)-\left\{y_{1}\right\} \nsubseteq$ $V\left(B^{\prime}\right)$ then G^{\prime} has a path T from x to $\left(A-y_{1}\right) \cup\left(C-y_{1}\right) \cup(P-p) \cup(Q-a)$ and internally disjoint from $A \cup B^{\prime} \cup C \cup P \cup Q$; so $A \cup B \cup C \cup P \cup Q \cup T$ contain disjoint paths from y_{1}, z_{i} to y_{2}, x, respectively, contradicting the choice of Y and Z in the 11-tuple (that $z_{1} X z_{2}$ is maximal). So $N(x) \cap V(H)-\left\{y_{1}\right\} \subseteq V\left(B^{\prime}\right)$. Consider $B^{\prime \prime}:=G\left[\left(B^{\prime}-z_{3-i}\right)+x\right]$.

If $B^{\prime \prime}$ contains disjoint paths P^{\prime}, Q^{\prime} from y_{2}, x to p, q, respectively, then $Q^{\prime} \cup Q \cup a A z_{i}$ and $P^{\prime} \cup P \cup c C y_{1}$ contradict the choice of Y, Z. If $B^{\prime \prime}$ contains disjoint paths $P^{\prime \prime}, Q^{\prime \prime}$ from x, y_{2} to p, q, respectively, then $Q^{\prime \prime} \cup Q \cup a A y_{1}$ and $P^{\prime \prime} \cup P \cup c C z_{i}$ contradict the choice of Y, Z.

So we may assume that there is a cut vertex z in $B^{\prime \prime}$ separating $\left\{x, y_{2}\right\}$ from $\{p, q\}$. Note that $z \in V\left(y_{2} B p\right)$.

Since x has at least two neighbors in $B^{\prime \prime}-y_{2}$ (because G is 5 -connected and X is induced in $G^{\prime}-x_{1} x_{2}$), the z-bridge of $B^{\prime \prime}$ containing $\left\{x, y_{2}\right\}$ has at least three vertices. Therefore, from the maximality of $p B z_{3-i}$ and 2-connectedness of $H-\left\{y_{2}, z_{1}, z_{2}\right\}$, there is a path in H from y_{1} to $y_{2} B z-\left\{y_{2}, z\right\}$ and internally disjoint from $P \cup Q \cup A \cup C \cup B^{\prime}$. So there is a path Y^{\prime} in H from y_{1} to y_{2} and disjoint from $P \cup Q \cup A \cup C \cup p B z_{3-i}$. Now $z_{3-i} B p \cup P \cup c C z_{i} \cup A \cup Y^{\prime}$ is a path in H through $z_{3-i}, z_{i}, y_{1}, y_{2}$ in order, contradicting (1).

By (2) and (3), it suffices to prove (iii). Since $H-\left\{y_{2}, z_{i}\right\}$ is 2 -connected, it contains disjoint paths P, Q from $B-y_{2}$ to some distinct vertices $s, t \in V(A \cup C)-\left\{z_{i}\right\}$, respectively, and internally disjoint from $A \cup B \cup C$.
(4) We may choose P, Q so that $s \neq y_{1}$ and $t \neq y_{1}$.

For, otherwise, $H-\left\{y_{2}, z_{i}\right\}$ has a separation $\left(H_{1}, H_{2}\right)$ such that $V\left(H_{1} \cap H_{2}\right)=\left\{v, y_{1}\right\}$ for some $v \in V(H),(A \cup C)-z_{i} \subseteq H_{1}$ and $B-y_{2} \subseteq H_{2}$. Recall the disjoint paths Y, Z in H from z_{1}, y_{1} to z_{2}, y_{2}, respectively. Suppose $v \notin V(Z)$. Then $Z-z_{i} \subseteq H_{2}-\left\{y_{1}, v\right\}$. Hence we may choose Y (by modifying $Y \cap H_{1}$) so that $V(Y \cap A)=\left\{y_{1}\right\}$ or $V(Y \cap C)=\left\{y_{1}\right\}$. Now $Z \cup A \cup Y$ or $Z \cup C \cup Y$ is a path in H from z_{3-i} to y_{2} through z_{i}, y_{1} in order, contradicting (1). So $v \in V(Z)$. Hence $Y \subseteq H_{2}-v$, and we may choose Z (by modifying $Z \cap H_{1}$) so that $V(Z \cap A)=\left\{z_{i}\right\}$ or $V(Z \cap C)=\left\{z_{i}\right\}$. Now $Z \cup A \cup Y$ or $Z \cup C \cup Y$ is a path in H from z_{3-i} to y_{2} through z_{i}, y_{1} in order, contradicting (1) and completing the proof of (4).

If $s \in V\left(A-y_{1}\right)$ and $t \in V\left(C-y_{1}\right)$ or $s \in V\left(C-y_{1}\right)$ and $t \in V\left(A-y_{1}\right)$, then P, Q are the desired paths for (iii). So we may assume by symmetry that $s, t \in V(C)$. Let $V(P \cap B)=\{p\}$ and $V(Q \cap B)=\{q\}$ such that y_{2}, p, q, z_{3-i} occur on B in this order. By (1) z_{i}, s, t, y_{1} must occur on C in order. We choose P, Q so that
(*) $s C t$ is maximal, then $p B z_{3-i}$ is maximal, and then $q B z_{3-i}$ is minimal.
Now consider B^{\prime}, the union of B and the B-bridges of H not containing $A \cup C$. Note that $(P-p) \cup(Q-q)$ is disjoint from B^{\prime}, and every path in H from $A \cup C$ to B^{\prime} and internally disjoint from $A \cup B^{\prime} \cup C$ must end in B. For convenience, let $K=P \cup Q \cup A \cup B^{\prime} \cup C$.
(5) $B^{\prime}-y_{2}$ contains independent paths P^{\prime}, Q^{\prime} from z_{3-i} to p, q, respectively.

Otherwise, $B^{\prime}-y_{2}$ has a cut vertex z separating z_{3-i} from $\{p, q\}$. Clearly, $z \in V\left(q B z_{3-i}-z_{3-i}\right)$, and we choose z so that $z B z_{3-i}$ is minimal.

Let $B^{\prime \prime}$ denote the z-bridge of $B^{\prime}-y_{2}$ containing z_{3-i}; then $z B z_{3-i} \subseteq B^{\prime \prime}$. Since $H-\left\{y_{2}, z_{i}\right\}$ is 2-connected, it contains a path W from some $w^{\prime} \in V\left(B^{\prime \prime}-z\right)$ to some $w \in V(P \cup Q \cup A \cup$ $C)-\left\{z_{i}\right\}$ and internally disjoint from K. By the definition of $B^{\prime}, w^{\prime} \in V\left(z_{i} B z_{3-i}\right)$. By (1), $w \notin V(P) \cup V\left(z_{i} C t-t\right)$. By $(*), w \notin V(Q) \cup V\left(t C y_{1}-y_{1}\right)$.

If $w \in V(A)-\left\{z_{i}, y_{1}\right\}$ then P, W give the desired paths for (iii). So we may assume $w=y_{1}$ for any choice of W; hence, $z \in V(Z)$ and $Y \cap\left(B^{\prime \prime} \cup\left(W-y_{1}\right)\right)=\emptyset$. By the
minimality of $z B z_{3-i}, B^{\prime \prime}$ has independent paths $P^{\prime \prime}, Q^{\prime \prime}$ from z_{3-i} to z, w^{\prime}, respectively. Note that $z_{i} Z z \cap\left(B^{\prime \prime}-z\right)=\emptyset$. Now $z_{i} Z z \cup P^{\prime \prime} \cup Q^{\prime \prime} \cup W \cup Y$ is a path in H through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order, contradicting (1).
(6) We may assume that $J(A, C) \nsubseteq L(A, C)$.

For, otherwise, there is a path R from B to some $r \in V(A)-\left\{y_{1}, z_{i}\right\}$ and internally disjoint from $A \cup B^{\prime} \cup C$. If $R \cap(P \cup Q) \neq \emptyset$, then it is easy to check that $P \cup Q \cup R$ contains the desired paths for (iii). So we may assume $R \cap(P \cup Q)=\emptyset$. If $y_{2} \notin V(R)$, then P, R are the desired paths for (iii). So assume $y_{2} \in V(R)$. Recall the paths P^{\prime}, Q^{\prime} from (5). Then $z_{i} C s \cup P \cup P^{\prime} \cup Q^{\prime} \cup Q \cup t C y_{1} \cup y_{1} A r \cup R$ is a path in H through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order, contradicting (1) and completing the proof of (6).

Let $J=J(A, C) \cup C$. Then by (1), J does not contain disjoint paths from y_{2}, z_{i} to y_{1}, z_{3-i}, respectively. So by Lemma 2.1, there exists a collection \mathcal{A} of subsets of $V(J)-\left\{y_{1}, y_{2}, z_{1}, z_{2}\right\}$ such that $\left(J, \mathcal{A}, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is 3 -planar. We choose \mathcal{A} so that every member of \mathcal{A} is minimal and, subject to this, $|\mathcal{A}|$ is minimum. Then
(7) for any $D \in \mathcal{A}$ and any $v \in V(D),\left(J\left[D+N_{J}(D)\right], N_{J}(D) \cup\{v\}\right)$ is not 3-planar.

Suppose for some $D \in \mathcal{A}$ and some $v \in D$, there is a collection of subsets \mathcal{A}^{\prime} of $D-\{v\}$ such that $\left(J\left[D+N_{J}(D)\right], \mathcal{A}^{\prime}, N_{J}(D) \cup\{v\}\right)$ is 3-planar. Then, with $\mathcal{A}^{\prime \prime}=(\mathcal{A}-\{D\}) \cup \mathcal{A}^{\prime}$, $\left(J, \mathcal{A}^{\prime \prime}, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is 3 -planar. So $\mathcal{A}^{\prime \prime}$ contradicts the choice of \mathcal{A}. Hence, we have (7).

Let v_{1}, \ldots, v_{k} be the vertices of $L(A, C) \cap\left(C-\left\{y_{1}, z_{i}\right\}\right)$ such that $z_{i}, v_{1}, \ldots, v_{k}, y_{1}$ occur on C in the order listed. We claim that
(8) $\left(J, z_{i}, v_{1}, \ldots, v_{k}, y_{1}, z_{3-i}, y_{2}\right)$ is 3-planar.

For, suppose otherwise. Since there is only one C-bridge in J and $\left(J, \mathcal{A}, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is 3 -planar, there exist $j \in[k]$ and $D \in \mathcal{A}$ such that $v_{j} \in D$. Since H is 2 -connected, let $c_{1}, c_{2} \in V(C) \cap N_{J}(D)$ with $c_{1} C c_{2}$ maximal.

Suppose $N_{J}(D) \subseteq V(C)$. Then, since there is only one C-bridge in J and $\left(J, \mathcal{A}, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is 3-planar, J has a separation $\left(J_{1}, J_{2}\right)$ such that $V\left(J_{1} \cap J_{2}\right)=\left\{c_{1}, c_{2}\right\}, D \cup V\left(c_{1} C c_{2}\right) \subseteq V\left(J_{1}\right)$, and $B \subseteq J_{2}$. Since J has only one C-bridge and C is induced in H, we have $J_{1}=c_{1} C c_{2}$. Now let \mathcal{A}^{\prime} be obtained from \mathcal{A} by removing all members of \mathcal{A} contained in $V\left(J_{1}\right)$. Then $\left(J, \mathcal{A}^{\prime}, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is 3-planar, contradicting the choice of \mathcal{A}.

Thus, let $c \in N_{J}(D)-V(C)$. So $c \in V(J(A, C))$. Let $D^{\prime}=J\left[D+\left\{c_{1}, c_{2}, c\right\}\right]$. By (7) and Lemma 2.1, D^{\prime} contains disjoint paths R from v_{j} to c and T from c_{1} to c_{2}. We may assume T is induced. Let C^{\prime} be obtained from C by replacing $c_{1} C c_{2}$ with T. We now see that A, B, C^{\prime} satisfy (a), but $J\left(A, C^{\prime}\right)$ intersects both $A-\left\{y_{1}, z_{i}\right\}$ (by definition of v_{j} and because $c \in V(J(A, C))-V(C))$ and $C^{\prime}-\left\{y_{1}, z_{i}\right\}$ (because of P, Q), contradicting (b) (via (6)) and completing the proof of (8).
(9) There exist disjoint paths R_{1}, R_{2} in $L(A, C)$ from some $r_{1}, r_{2} \in V(C)$ to some $r_{1}^{\prime}, r_{2}^{\prime} \in$ $V(A)$, respectively, and internally disjoint from $A \cup C$, such that $z_{i}, r_{1}, r_{2}, y_{1}$ occur on C in this order and $z_{i}, r_{2}^{\prime}, r_{1}^{\prime}, y_{1}$ occur on A in this order.

We prove (9) by studying the $(A \cup C)$-bridges of H other than $J(A, C)$. For any $(A \cup C)$-bridge T of H with $T \neq J(A, C)$, if T intersects A let $a_{1}(T), a_{2}(T) \in V(T \cap A)$ with $a_{1}(T) A a_{2}(T)$ maximal, and if T intersects C let $c_{1}(T), c_{2}(T) \in V(T \cap C)$ with $c_{1}(T) C c_{2}(T)$ maximal. We choose the notation so that $z_{i}, a_{1}(T), a_{2}(T), y_{1}$ occur on A in order, and $z_{i}, c_{1}(T), c_{2}(T), y_{1}$ occur on C in order.

If T_{1}, T_{2} are $(A \cup C)$-bridges of H such that $T_{2} \subseteq L(A, C), T_{1} \neq J(A, C)$, and T_{1} intersects C (or A) only, then $c_{1}\left(T_{1}\right) C c_{2}\left(T_{1}\right)-\left\{c_{1}\left(T_{1}\right), c_{2}\left(T_{1}\right)\right\}$ (or $\left.a_{1}\left(T_{1}\right) A a_{2}\left(T_{1}\right)-\left\{a_{1}\left(T_{1}\right), a_{2}\left(T_{1}\right)\right\}\right)$ does not intersect T_{2}. For, otherwise, we may modify C (or A) by replacing $c_{1}\left(T_{1}\right) C c_{2}\left(T_{1}\right)$ (or $a_{1}\left(T_{1}\right) A a_{2}\left(T_{1}\right)$) with an induced path in T_{1} from $c_{1}\left(T_{1}\right)$ to $c_{2}\left(T_{1}\right)$ (or from $a_{1}\left(T_{1}\right)$ to $a_{2}\left(T_{1}\right)$). The new A and C do not affect (a), (b) and (c) but enlarge $L(A, C)$, contradicting (d).

Because of the disjoint paths Y and Z in $H,\left(H, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is not 3-planar. By (1) $A-\left\{y_{1}, z_{i}\right\} \neq \emptyset$. Hence, since $H-\left\{y_{2}, z_{1}, z_{2}\right\}$ is 2-connected, $L(A, C) \neq \emptyset$. Thus, since $\left(J, z_{i}, v_{1}, \ldots, v_{k}, y_{1}, z_{3-i}, y_{2}\right)$ is 3 -planar (by (8)) and $J(A, C)$ does not intersect $A-\left\{y_{1}, z_{i}\right\}$ (by (6)), one of the following holds: There exist ($A \cup C$)-bridges T_{1}, T_{2} of H such that $T_{1} \cup T_{2} \subseteq$ $L(A, C), z_{i} A a_{2}\left(T_{1}\right)$ properly contains $z_{i} A a_{1}\left(T_{2}\right)$, and $c_{1}\left(T_{1}\right) C y_{1}$ properly contains $c_{2}\left(T_{2}\right) C y_{1} ;$ or there exists an $(A \cup C)$-bridge T of H such that $T \subseteq L(A, C)$ and $T \cup a_{1}(T) A a_{2}(T) \cup$ $c_{1}(T) C c_{2}(T)$ has disjoint paths from $a_{1}(T), a_{2}(T)$ to $c_{2}(T), c_{1}(T)$, respectively. In either case, we have (9).
(10) $r_{1}, r_{2} \in V\left(t C y_{1}\right)$ for all choices of R_{1}, R_{2} in (9), or $r_{1}, r_{2} \in V\left(z_{i} C s\right)$ for all choices of R_{1}, R_{2} in (9).

For, suppose there exist R_{1}, R_{2} such that $r_{1} \in V\left(z_{i} C s\right)$ and $r_{2} \in V\left(t C y_{1}\right)$, or $r_{1} \in V(s C t)-$ $\{s, t\}$, or $r_{2} \in V(s C t)-\{s, t\}$. Let $A^{\prime}:=z_{i} A r_{2}^{\prime} \cup R_{2} \cup r_{2} C y_{1}$ and $C^{\prime}:=z_{i} C r_{1} \cup R_{1} \cup r_{1}^{\prime} A y_{1}$. We may assume A^{\prime}, C^{\prime} are induced paths in H (by taking induced paths in $H\left[A^{\prime}\right]$ and $H\left[C^{\prime}\right]$). Note that $A^{\prime}, B, C^{\prime}$ satisfy (a), and $J(A, C) \subseteq J\left(A^{\prime}, C^{\prime}\right)$. However, because of P and $Q, J\left(A^{\prime}, C^{\prime}\right)$ intersects both $A^{\prime}-\left\{z_{i}, y_{1}\right\}$ and $C^{\prime}-\left\{z_{i}, y_{1}\right\}$, contradicting (b) (via (6)) and completing the proof of (10).

If $r_{1}, r_{2} \in V\left(z_{i} C s\right)$ for all choices of R_{1}, R_{2} in (9) then we choose such R_{1}, R_{2} that $z_{i} A r_{1}^{\prime}$ and $z_{i} C r_{2}$ are maximal, and let $z^{\prime}:=r_{1}^{\prime}$ and $z^{\prime \prime}=r_{2}$; otherwise, define $z^{\prime}=z^{\prime \prime}=z_{i}$. Similarly, if $r_{1}, r_{2} \in V\left(t C y_{1}\right)$ for all choices of R_{1}, R_{2} in (9), then we choose such R_{1}, R_{2} that $y_{1} A r_{2}^{\prime}$ and $y_{1} C r_{1}$ are maximal, and let $y^{\prime}:=r_{2}^{\prime}$ and $y^{\prime \prime}=r_{1}$; otherwise, define $y^{\prime}=y^{\prime \prime}=y_{1}$. By (10), $z_{i}, z^{\prime}, y^{\prime}, y_{1}$ occur on A in order, and $z_{i}, z^{\prime \prime}, s, t, y^{\prime \prime}, y_{1}$ occur on C in order.

Note that H has a path W from some $y \in V(B) \cup V(P-s) \cup V(Q-t)$ to some $w \in V\left(z_{i} A z^{\prime}-\right.$ $\left.\left\{z^{\prime}, z_{i}\right\}\right) \cup V\left(z_{i} C z^{\prime \prime}-\left\{z^{\prime \prime}, z_{i}\right\}\right) \cup V\left(y^{\prime} A y_{1}-\left\{y^{\prime}, y_{1}\right\}\right) \cup V\left(y^{\prime \prime} C y_{1}-\left\{y^{\prime \prime}, y_{1}\right\}\right)$ such that W is internally disjoint from K. For, otherwise, ($H, z_{i}, y_{1}, z_{3-i}, y_{2}$) is 3-planar, contradicting the existence of the disjoint paths Y and Z. By (6), $w \notin V(A)$. If $w \in V\left(z_{i} A z^{\prime}-\left\{z^{\prime}, z_{i}\right\}\right) \cup V\left(y^{\prime} A y_{1}-\left\{y^{\prime}, y_{1}\right\}\right)$ then we can find the desired P, Q. So assume $w \in V\left(z_{i} C z^{\prime \prime}-\left\{z^{\prime \prime}, z_{i}\right\}\right) \cup V\left(y^{\prime \prime} C y_{1}-\left\{y^{\prime \prime}, y_{1}\right\}\right)$. By $(*)$ and $(1), y \notin V\left(B-y_{2}\right)$ and $y \notin V(P \cup Q)$. This forces $y=y_{2}$, which is impossible as $N_{H}\left(y_{2}\right)=\left\{w_{2}\right\}$.

Remark. Note from the proof of Lemma 4.3 that the conclusions (ii) and (iii) hold for those paths A, B, C that satisfy (a), (b), (c) and (d).

Figure 1: An intermediate structure

5 Finding $T K_{5}$

In this section, we prove Theorem 1.1 . Let G be a 5 -connected nonplanar graph and let $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(G)$. Let $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}$ be distinct and let $G^{\prime}:=G-\left\{y_{2} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\}$.

We may assume that $G^{\prime}-x_{1} x_{2}$ has an induced path L from x_{1} to x_{2} such that $y_{1}, y_{2} \notin$ $V(L),\left(G-y_{2}\right)-L$ is 2 -connected, and $w_{1}, w_{2}, w_{3} \in V(L)$; for otherwise, the conclusion of Theorem 1.1 follows from Lemma 3.2 . Hence, $G^{\prime}-x_{1} x_{2}$ has an induced path X from x_{1} to x_{2} such that $y_{1} \notin V(X), w_{1} y_{2}, w_{3} y_{2} \in E(X)$, and $G^{\prime}-X=G-X$ is 2-connected. Hence, ($G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}$) is a 9 -tuple.

We may assume that there exist $z_{i} \in V\left(x_{i} X y_{2}\right)-\left\{x_{i}, y_{2}\right\}$ for $i \in[2]$ such that $H:=$ $G^{\prime}-\left(X-\left\{y_{2}, z_{1}, z_{2}\right\}\right)$ has disjoint paths Y, Z from y_{1}, z_{1} to y_{2}, z_{2}, respectively; for, otherwise, the conclusion of Theorem 1.1 follows from Lemma 4.1. We choose such Y, Z so that $z_{1} X z_{2}$ is maximal. Then ($G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}, z_{1}, z_{2}$) is an 11-tuple.

By Lemma 4.2 and by symmetry, we may assume that
(1) for $i \in[2], H$ has no path through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order (so $y_{1} z_{i} \notin E(G)$),
and that there exist independent paths A, B, C in H with A and C from z_{1} to y_{1}, and B from y_{2} to z_{2}. See Figure 1 .

Let $J(A, C)$ denote the $(A \cup C)$-bridge of H containing B, and $L(A, C)$ denote the union of $(A \cup C)$-bridges of H intersecting both $A-\left\{y_{1}, z_{1}\right\}$ and $C-\left\{y_{1}, z_{1}\right\}$. We may choose A, B, C such that the following are satisfied in the order listed:
(a) A, B, C are induced paths in H,
(b) whenever possible $J(A, C) \subseteq L(A, C)$,
(c) $J(A, C)$ is maximal, and
(d) $L(A, C)$ is maximal.

By Lemma 4.3 and its proof (see the remark at the end of Section 4), we may assume that

$$
z_{2} x_{2} \in E(X)
$$

and that there exist disjoint paths P, Q in H from $p, q \in V\left(B-y_{2}\right)$ to $c \in V(C)-\left\{y_{1}, z_{1}\right\}, a \in$ $V(A)-\left\{y_{1}, z_{1}\right\}$, respectively, and internally disjoint from $A \cup B \cup C$. By symmetry between A and C, we assume that y_{2}, p, q, z_{2} occur on B in order. We further choose A, B, C, P, Q so that
(2) $q B z_{2}$ is minimal, then $p B z_{2}$ is maximal, and then $a A y_{1} \cup c C z_{1}$ is minimal.

Let B^{\prime} denote the union of B and the B-bridges of H not containing $A \cup C$. Note that all paths in H from $A \cup C$ to B^{\prime} and internally disjoint from B^{\prime} must have an end in B. For convenience, let

$$
K:=A \cup B^{\prime} \cup C \cup P \cup Q .
$$

Then
(3) H has no path from $a A y_{1}-a$ to $z_{1} C c-c$ and internally disjoint from K.

For, suppose S is a path in H from some vertex $s \in V\left(a A y_{1}-a\right)$ to some vertex $s^{\prime} \in V\left(z_{1} C c-c\right)$ and internally disjoint from K. Then $z_{2} B q \cup Q \cup a A z_{1} \cup z_{1} C s^{\prime} \cup S \cup s A y_{1} \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1).

We proceed by proving a number of claims from which Theorem 1.1 will follow. Our intermediate goal is to prove (12) that H contains a path from y_{1} to $Q-a$ and internally disjoint from K. However, the claims leading to (12) will also be useful when we later consider structure of G near z_{1}.
(4) $B^{\prime}-y_{2}$ has no cut vertex contained in $q B z_{2}-z_{2}$ and, hence, for any $q^{*} \in V\left(B^{\prime}\right)-\left\{y_{2}, q\right\}$, $B^{\prime}-y_{2}$ has independent paths P_{1}, P_{2} from z_{2} to q, q^{*}, respectively.

Suppose $B^{\prime}-y_{2}$ contains a cut vertex u with $u \in V\left(q B z_{2}-z_{2}\right)$. Choose u so that $u B z_{2}$ is minimal. Since $H-\left\{y_{2}, z_{1}\right\}$ is 2 -connected, there is a path S in H from some $s^{\prime} \in V\left(u B z_{2}-u\right)$ to some $s \in V(A \cup C \cup P \cup Q)-\{p, q\}$ and internally disjoint from K. By the minimality of $u B z_{2}$, the u-bridge of $B^{\prime}-y_{2}$ containing $u B z_{2}$ has independent paths R_{1}, R_{2} from z_{2} to s^{\prime}, u, respectively. By the minimality of $q B z_{2}$ in (2), S is disjoint from $(P \cup Q \cup A \cup C)-\left\{z_{1}, y_{1}\right\}$. If $s=z_{1}$ then $\left(R_{1} \cup S\right) \cup A \cup\left(y_{1} C c \cup P \cup p B y_{2}\right)$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1). So $s=y_{1}$. Then $\left(z_{1} A a \cup Q \cup q B u \cup R_{2}\right) \cup\left(R_{1} \cup S\right) \cup\left(y_{1} C c \cup P \cup p B y_{2}\right)$ is a path in H through $z_{1}, z_{2}, y_{1}, y_{2}$ in order, contradicting (1).

Hence, $B^{\prime}-y_{2}$ has no cut vertex contained in $q B z_{2}-z_{2}$. Thus, the second half of (4) follows from Menger's theorem.
(5) We may assume that G^{\prime} has no path from $a A y_{1}-a$ to $z_{1} X z_{2}$ and internally disjoint from $K \cup X$, and no path from $c C y_{1}-c$ to $z_{1} X z_{2}-z_{1}$ and internally disjoint from $K \cup X$.

For, suppose S is a path in G^{\prime} from some $s \in V\left(a A y_{1}-a\right) \cup V\left(c C y_{1}-c\right)$ to some $s^{\prime} \in V\left(z_{1} X z_{2}\right)$ and internally disjoint from $K \cup X$, such that $s^{\prime} \neq z_{1}$ if $s \in V\left(c C y_{1}-c\right)$. If $s^{\prime}=z_{1}$ then $s \in$ $V\left(a A y_{1}-a\right)$; so $z_{2} B q \cup Q \cup a A z_{1} \cup S \cup s A y_{1} \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1). If $s^{\prime}=z_{2}$ then $s=y_{1}$ by (2); so ($\left.z_{1} A a \cup Q \cup q B z_{2}\right) \cup S \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{1}, z_{2}, y_{1}, y_{2}$ in order, contradicting (1). Hence, $s^{\prime} \in V\left(z_{1} X z_{2}\right)-\left\{z_{1}, z_{2}\right\}$.

Suppose $s^{\prime} \in V\left(z_{1} X y_{2}-z_{1}\right)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. If $s \in V\left(a A y_{1}-a\right)$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{2} \cup P \cup c C y_{1}\right) \cup\left(P_{1} \cup Q \cup a A z_{1} \cup z_{1} X x_{1}\right) \cup\left(y_{1} A s \cup S \cup s^{\prime} X y_{2}\right) \cup$ $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. If $s \in V\left(c A y_{1}-c\right)$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{2} \cup P \cup c C z_{1} \cup z_{1} X x_{1}\right) \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(y_{1} C s \cup S \cup s^{\prime} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Now assume $s^{\prime} \in V\left(z_{2} X y_{2}-z_{2}\right)$. If $s \in V\left(a A y_{1}-a\right)$, then $z_{1} X x_{1} \cup z_{1} X y_{2} \cup C \cup\left(z_{1} A a \cup\right.$ $\left.Q \cup q B z_{2} \cup z_{2} x_{2}\right) \cup\left(y_{1} A s \cup S \cup s^{\prime} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. If $s \in V\left(c C y_{1}-c\right)$, then $z_{1} X x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C c \cup P \cup p B z_{2} \cup z_{2} x_{2}\right) \cup$ $\left(y_{1} C s \cup S \cup s^{\prime} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. This completes the proof of (5).

Denote by $L(A)$ (respectively, $L(C)$) the union of $(A \cup C$)-bridges of H not intersecting C (respectively, A). Let $C^{\prime}=C \cup L(C)$. The next four claims concern paths from $x_{1} X z_{1}-z_{1}$ to other parts of G^{\prime}. We may assume that
(6) $N\left(x_{1} X z_{1}-\left\{x_{1}, z_{1}\right\}\right) \subseteq V\left(C^{\prime}\right) \cup\left\{x_{1}, z_{1}\right\}$, and that G^{\prime} has no disjoint paths from $s_{1}, s_{2} \in$ $V\left(x_{1} X z_{1}-z_{1}\right)$ to $s_{1}^{\prime}, s_{2}^{\prime} \in V(C)$, respectively, and internally disjoint from $K \cup X$ such that $s_{2}^{\prime} \in V\left(c C y_{1}-c\right), x_{1}, s_{1}, s_{2}, z_{1}$ occur on X in order, and $z_{1}, s_{1}^{\prime}, s_{2}^{\prime}, y_{1}$ occur on C in order.

First, suppose $N\left(x_{1} X z_{1}-\left\{x_{1}, z_{1}\right\}\right) \nsubseteq V\left(C^{\prime}\right) \cup\left\{x_{1}, z_{1}\right\}$. Then there exists a path S in G^{\prime} from some $s \in V\left(x_{1} X z_{1}\right)-\left\{x_{1}, z_{1}\right\}$ to some $s^{\prime} \in V\left(A \cup B^{\prime} \cup P \cup Q\right)-\left\{c, y_{1}, y_{2}, z_{1}, z_{2}\right\}$ and internally disjoint from $K \cup X$. If $s^{\prime} \in V(A)-\left\{z_{1}, y_{1}\right\}$ then $y_{1} C c \cup P \cup p B y_{2}, S \cup s^{\prime} A a \cup Q \cup q B z_{2}$ contradict the choice of Y, Z. If $s^{\prime} \in V(Q-a)$ then $y_{1} C c \cup P \cup p B y_{2}, S \cup s^{\prime} Q q \cup q B z_{2}$ contradict the choice of Y, Z. If $s^{\prime} \in V(P-c)$ then let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$; now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup p P s^{\prime} \cup S \cup s X x_{1}\right) \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. If $s^{\prime} \in V\left(B^{\prime}\right)-\left\{y_{2}, p, q\right\}$ then let P_{1}, P_{2} be the paths in (4) with $q^{*}=s^{\prime}$; now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup S \cup s X x_{1}\right) \cup(C \cup$ $\left.z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Now assume G^{\prime} has disjoint paths S_{1}, S_{2} from $s_{1}, s_{2} \in V\left(x_{1} X z_{1}-z_{1}\right)$ to $s_{1}^{\prime}, s_{2}^{\prime} \in V(C)$, respectively, and internally disjoint from $K \cup X$ such that $s_{2}^{\prime} \in V\left(c C y_{1}-c\right), x_{1}, s_{1}, s_{2}, z_{1}$ occur on X in order, and $z_{1}, s_{1}^{\prime}, s_{2}^{\prime}, y_{1}$ occur on C in order. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup P \cup c C s_{1}^{\prime} \cup S_{1} \cup s_{1} X x_{1}\right) \cup\left(y_{1} C s_{2}^{\prime} \cup S_{2} \cup s_{2} X y_{2}\right) \cup$ $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. This completes the proof of (6).
(7) For any path W in G^{\prime} from x_{1} to some $w \in V(K)-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup X$, we may assume $w \in V(A \cup C)-\left\{y_{1}, z_{1}\right\}$. (Note that such W exists as G is 5 -connected and $G^{\prime}-X$ is 2 -connected.)

For, let W be a path in G^{\prime} from x_{1} to $w \in V(K)-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup X$, such that $w \notin V(A \cup C)-\left\{z_{1}, y_{1}\right\}$. Then $w \neq y_{2}$ as $N_{G^{\prime}}\left(y_{2}\right)=\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}$.

Suppose $w \in V\left(B^{\prime}-q\right)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=w$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup$ $\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup W\right) \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

So assume $w \notin V\left(B^{\prime}-q\right)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. If $w \in V(P-c)$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup p P w \cup W\right) \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. If $w \in V(Q-a)$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup\right.$ $q Q w \cup W) \cup\left(P_{2} \cup P \cup c C y_{1}\right) \cup\left(A \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. This completes the proof of (7).
(8) We may assume that G^{\prime} has no path from $x_{1} X z_{1}-x_{1}$ to y_{1} and internally disjoint from $K \cup X$.

For, suppose that R is a path in G^{\prime} from some $x \in V\left(x_{1} X z_{1}-x_{1}\right)$ to y_{1} and internally disjoint from $K \cup X$. Then $x \neq z_{1}$; as otherwise $z_{2} B q \cup Q \cup a A z_{1} \cup R \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1). Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. We use W from (7). If $w \in V(A)-\left\{z_{1}, y_{1}\right\}$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A w \cup W\right) \cup\left(P_{2} \cup P \cup\right.$ $\left.c C y_{1}\right) \cup\left(R \cup x X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. If $w \in V(C)-\left\{z_{1}, y_{1}\right\}$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup P \cup c C w \cup W\right) \cup(R \cup$ $\left.x X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. This completes the proof of (8).
(9) If G^{\prime} has a path from $x_{1} X z_{1}-\left\{x_{1}, z_{1}\right\}$ to $c C y_{1}-c$ and internally disjoint from $K \cup X$, then we may assume that

- $w \in V(C)-\left\{y_{1}, z_{1}\right\}$ for any choice of W in (7), and
- G^{\prime} has no path from x_{2} to $C-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup X$.

Let S be a path in G^{\prime} from some $s \in V\left(x_{1} X z_{1}\right)-\left\{x_{1}, z_{1}\right\}$ to $V\left(c C y_{1}-c\right)$ and internally disjoint from $K \cup X$. Since X is induced in $G^{\prime}-x_{1} x_{2}, G^{\prime}\left[H-\left\{y_{2}, z_{1}, z_{2}\right\}+s\right]$ is 2-connected. Hence, since $N\left(x_{1} X z_{1}-\left\{x_{1}, z_{1}\right\}\right) \subseteq V\left(C^{\prime}\right) \cup\left\{x_{1}, z_{1}\right\}$ (by (6)), G^{\prime} has independent paths S_{1}, S_{2} from s to distinct $s_{1}, s_{2} \in V(C)-\left\{z_{1}, y_{1}\right\}$ and internally disjoint from $K \cup X$. Because of S, we may assume that $z_{1}, s_{1}, s_{2}, y_{1}$ occur on C in this order and $s_{2} \in V\left(c C y_{1}-c\right)$.

Suppose we may choose the W in (7) with $w \in V(A)-\left\{z_{1}, y_{1}\right\}$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup s X x_{1} \cup s X y_{2} \cup\left(P_{2} \cup P \cup c C s_{1} \cup S_{1}\right) \cup\left(S_{2} \cup s_{2} C y_{1} \cup\right.$ $\left.y_{1} x_{2}\right) \cup\left(P_{1} \cup Q \cup a A w \cup W\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $s, x_{1}, x_{2}, y_{2}, z_{2}$.

Now assume that S^{\prime} is a path in G^{\prime} from x_{2} to some $s^{\prime} \in V(C)-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup X$. Then $S_{1} \cup S_{2} \cup S^{\prime} \cup\left(C-z_{1}\right)$ contains independent paths $S_{1}^{\prime}, S_{2}^{\prime}$ which are from s to y_{1}, x_{2}, respectively (when $s^{\prime} \in V\left(z_{1} C s_{2}\right)-\left\{s_{2}, z_{1}\right\}$), or from s to c, x_{2}, respectively (when $s^{\prime} \in V\left(s_{2} C y_{1}-y_{1}\right)$). If $S_{1}^{\prime}, S_{2}^{\prime}$ end at y_{1}, x_{2}, respectively, then $s X x_{1} \cup s X y_{2} \cup S_{1}^{\prime} \cup S_{2}^{\prime} \cup$ $\left(y_{1} A a \cup Q \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $s, x_{1}, x_{2}, y_{1}, y_{2}$. So assume that $S_{1}^{\prime}, S_{2}^{\prime}$ end at c, x_{2}, respectively. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $s X x_{1} \cup s X y_{2} \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(S_{1}^{\prime} \cup P \cup P_{2}\right) \cup S_{2}^{\prime} \cup\left(P_{1} \cup Q \cup a A y_{1} \cup y_{1} x_{1}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $s, x_{1}, x_{2}, y_{2}, z_{2}$. This completes the proof of (9).

The next two claims deal with $L(A)$ and $L(C)$. First, we may assume that

$$
\begin{equation*}
L(A) \cap A \subseteq z_{1} A a \tag{10}
\end{equation*}
$$

For any $(A \cup C)$-bridge R of H contained in $L(A)$, let $z(R), y(R) \in V(R \cap A)$ such that $z(R) A y(R)$ is maximal. Suppose for some $(A \cup C)$-bridge R_{1} of H contained in $L(A)$, we have $y\left(R_{1}\right) A z\left(R_{1}\right) \nsubseteq z_{1} A a$. Let R_{1}, \ldots, R_{m} be a maximal sequence of $(A \cup C)$-bridges of H contained in $L(A)$, such that for each $i \in\{2, \ldots, m\}, R_{i}$ contains an internal vertex of $\bigcup_{j=1}^{i-1} z\left(R_{j}\right) A y\left(R_{j}\right)$ (which is a path). Let $a_{1}, a_{2} \in V(A)$ such that $\bigcup_{j=1}^{m} z\left(R_{j}\right) A y\left(R_{j}\right)=a_{1} A a_{2}$. By (c), $J(A, C)$ does not intersect $a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}$; so $a_{1}, a_{2} \in V\left(a A y_{1}\right)$. By (d), G^{\prime} has no path from $a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}$ to C and internally disjoint from $K \cup X$. Hence by (5), $\left\{a_{1}, a_{2}, x_{1}, x_{2}, y_{2}\right\}$ is a cut in G. Thus, G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a_{1}, a_{2}, x_{1}, x_{2}, y_{2}\right\}$, $P \cup Q \cup B^{\prime} \cup C \cup X \subseteq G_{1}$, and $a_{1} A a_{2} \cup\left(\bigcup_{j=1}^{m} R_{j}\right) \subseteq G_{2}$.

Let $z \in V\left(G_{2}\right)-\left\{a_{1}, a_{2}, x_{1}, x_{2}, y_{2}\right\}$ and assume $z_{1}, a_{1}, a_{2}, y_{1}$ occur on A in order. Since G is 5-connected, $G_{2}-y_{2}$ contains four independent paths $R_{1}, R_{2}, R_{3}, R_{4}$ from z to $x_{1}, x_{2}, a_{1}, a_{2}$, respectively. Now $R_{1} \cup R_{2} \cup\left(R_{3} \cup a_{1} A z_{1} \cup z_{1} X y_{2}\right) \cup\left(R_{4} \cup a_{2} A y_{1}\right) \cup\left(y_{1} C c \cup P \cup p B y_{2}\right) \cup$ $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z$. This completes the proof of (10).
(11) We may assume that if R is an $(A \cup C)$-bridge of H contained in $L(C)$ and $R \cap\left(c C y_{1}-c\right) \neq$ \emptyset then $|V(R)-V(C)|=1$ and $N(R-C)=\left\{c_{1}, c_{2}, s_{1}, s_{2}, y_{2}\right\}$, with $c_{1} C c_{2}=c_{1} c_{2}$ and $s_{1} s_{2}=s_{1} X s_{2} \subseteq z_{1} X x_{1}$.

For any $(A \cup C)$-bridge R in $L(C)$, let $z(R), y(R) \in V(C \cap R)$ such that $z(R) C y(R)$ is maximal. Let R_{1} be an $(A \cup C)$-bridge of H contained in $L(C)$ such that $R_{1} \cap\left(c C y_{1}-c\right) \neq \emptyset$.

Let R_{1}, \ldots, R_{m} be a maximal sequence of $(A \cup C)$-bridges of H contained in $L(C)$, such that for each $i \in\{2, \ldots, m\}, R_{i}$ contains an internal vertex of $\bigcup_{j=1}^{i-1} z\left(R_{j}\right) C y\left(R_{j}\right)$ (which is a path). Let $c_{1}, c_{2} \in V(C)$ such that $c_{1} C c_{2}=\bigcup_{j=1}^{m} z\left(R_{j}\right) C y\left(R_{j}\right)$, with $z_{1}, c_{1}, c_{2}, y_{1}$ on C in order. So $c_{2} \in V\left(c C y_{1}-y_{1}\right)$ and, hence, $c_{1} \in V\left(c C y_{1}-y_{1}\right)$ by (c) and the existence of P. Let $R^{\prime}=\bigcup_{j=1}^{m} R_{j} \cup c_{1} C c_{2}$.

By (c), G^{\prime} has no path from $c_{1} C c_{2}-\left\{c_{1}, c_{2}\right\}$ to $V\left(B^{\prime} \cup P \cup Q\right) \cup\left\{z_{1}\right\}$ and internally disjoint from $K \cup X$. By (d), G^{\prime} has no path from $c_{1} C c_{2}-\left\{c_{1}, c_{2}\right\}$ to $A-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup X$.

If $N\left(x_{2}\right) \cap V\left(R^{\prime}-\left\{c_{1}, c_{2}\right\}\right) \neq \emptyset$ then by (5) and (9), $N\left(R^{\prime}-\left\{c_{1}, c_{2}\right\}\right)=\left\{x_{1}, x_{2}, y_{2}, c_{1}, c_{2}\right\}$. Let $z \in V\left(R^{\prime}\right)-\left\{x_{1}, x_{2}, c_{1}, c_{2}\right\}$. Since G is 5 -connected, R^{\prime} has independent paths $W_{1}, W_{2}, W_{3}, W_{4}$ from z to $x_{1}, x_{2}, c_{2}, c_{1}$, respectively. Now $W_{1} \cup W_{2} \cup\left(W_{3} \cup c_{2} C y_{1}\right) \cup\left(W_{4} \cup c_{1} C z_{1} \cup z_{1} X y_{2}\right) \cup$ $\left(y_{1} A a \cup Q \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z$.

So we may assume $N\left(x_{2}\right) \cap V\left(R^{\prime}-\left\{c_{1}, c_{2}\right\}\right)=\emptyset$. Since G is 5 -connected, it follows from (5) that there exist distinct $s_{1}, s_{2} \in V\left(x_{1} X z_{1}-z_{1}\right) \cap N\left(R^{\prime}-\left\{c_{1}, c_{2}\right\}\right)$. Choose s_{1}, s_{2} such that $s_{1} X s_{2}$ is maximal and assume that $x_{1}, s_{1}, s_{2}, z_{1}$ occur on X in this order. By (6), $\left\{c_{1}, c_{2}, s_{1}, s_{2}, y_{2}\right\}$ is a 5 -cut in G; so G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{c_{1}, c_{2}, s_{1}, s_{2}, y_{2}\right\}$ and $R^{\prime} \cup c_{1} C c_{2} \cup s_{1} X s_{2} \subseteq G_{2}$. By (6) again, ($G_{2}-y_{2}, c_{1}, c_{2}, s_{1}, s_{2}$) is planar (since G is 5 -connected). If $\left|V\left(G_{2}\right)\right| \geq 7$ then by Lemma 2.3 , (i) or (ii) or (iii) holds. So we may assume that $\left|V\left(G_{2}\right)\right|=6$, and we have the assertion of (11).

We may assume that
(12) H has a path Q^{\prime} from y_{1} to some $q^{\prime} \in V(Q-a)$ and internally disjoint from K.

First, suppose that $y_{1} \in V(J(A, C))$. Then, H has a path Q^{\prime} from y_{1} to some $q^{\prime} \in V(P-$ c) $\cup V(Q-a) \cup V(B)$ internally disjoint from K. We may assume $q^{\prime} \in V(P-c) \cup V(B)$;
for otherwise, $q^{\prime} \in V(Q-a)$ and the claim holds. If $q^{\prime} \in V(P-c) \cup V\left(y_{2} B q-q\right)$ then $(P-c) \cup\left(y_{2} B q-q\right) \cup Q^{\prime}$ contains a path $Q^{\prime \prime}$ from y_{1} to y_{2}; so $z_{1} X x_{1} \cup z_{1} X y_{2} \cup C \cup\left(z_{1} A a \cup\right.$ $\left.Q \cup q B z_{2} \cup z_{2} x_{2}\right) \cup Q^{\prime \prime} \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. Hence, we may assume $q^{\prime} \in V\left(q B z_{2}-q\right)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=q^{\prime}$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A z_{1} \cup z_{1} X x_{1}\right) \cup\left(P_{2} \cup Q^{\prime}\right) \cup\left(y_{1} C c \cup P \cup p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Thus, we may assume that $y_{1} \notin V(J(A, C))$. Note that $y_{1} \notin V(L(A))$ (by (10)) and $y_{1} \notin V(L(C))$ (by (8) and (11)). Hence, since $y_{1} y_{2} \notin E(G)$ and G is 5 -connected, y_{1} is contained in some $(A \cup C)$-bridge of H, say D_{1}, with $D_{1} \subseteq L(A, C)$ and $D_{1} \neq J(A, C)$. Note that $\left|V\left(D_{1}\right)\right| \geq 3$ as A and C are induced paths. For any $(A \cup C)$-bridge D of H with that $D \subseteq L(A, C)$ and $D \neq J(A, C)$, let $a(D) \in V(A) \cap V(D)$ and $c(D) \in V(C) \cap V(D)$ such that $z_{1} A a(D)$ and $z_{1} C c(D)$ are minimal.

Let D_{1}, \ldots, D_{k} be a maximal sequence of $(A \cup C)$-bridges of H with $D_{i} \subseteq L(A, C)$ (so $\left.D_{i} \neq J(A, C)\right)$ for $i \in[k]$, such that, for each $i \in[k-1], D_{i+1} \cap(A \cup C)$ is not contained in $\bigcup_{j=1}^{i}\left(c\left(D_{j}\right) C y_{1} \cup a\left(D_{j}\right) A y_{1}\right)$, and $D_{i+1} \cap(A \cup C)$ is not contained in $\bigcap_{j=1}^{i}\left(z_{1} C c\left(D_{j}\right) \cup z_{1} A a\left(D_{j}\right)\right)$. Note that for any $i \in[k], \bigcup_{j=1}^{i} a\left(D_{j}\right) A y_{1}$ and $\bigcup_{j=1}^{i} c\left(D_{j}\right) C y_{1}$ are paths. So let $a_{i} \in V(A)$ and $c_{i} \in V(C)$ such that $\bigcup_{j=1}^{i} a\left(D_{j}\right) A y_{1}=a_{i} A y_{1}$ and $\bigcup_{j=1}^{i} c\left(D_{j}\right) C y_{1}=c_{i} C y_{1}$. Let $S_{i}=$ $a_{i} C y_{1} \cup c_{i} C y_{1} \cup\left(\bigcup_{j=1}^{i} D_{j}\right)$.

Next, we claim that for any $l \in[k]$ and for any $r_{l} \in V\left(S_{l}\right)-\left\{a_{l}, c_{l}\right\}$ there exist three independent paths A_{l}, C_{l}, R_{l} in S_{l} from y_{1} to a_{l}, c_{l}, r_{l}, respectively. This is clear when $l=1$; note that if $a_{l}=y_{1}$, or $c_{l}=y_{1}$, or $r_{l}=y_{1}$ then A_{l}, or C_{l}, or R_{l} is a trivial path. Now assume that the assertion is true for some $l \in[k-1]$. Let $r_{l+1} \in V\left(S_{l+1}\right)-\left\{a_{l+1}, c_{l+1}\right\}$. When $r_{l+1} \in$ $V\left(S_{l}\right)-\left\{a_{l}, c_{l}\right\}$ let $r_{l}:=r_{l+1}$; otherwise, let $r_{l} \in V\left(D_{l+1}\right)$ with $r_{l} \in V\left(a_{l} A y_{1}-a_{l}\right) \cup V\left(c_{l} C y_{1}-c_{l}\right)$. By induction hypothesis, there are three independent paths A_{l}, C_{l}, R_{l} in S_{l} from y_{1} to a_{l}, c_{l}, r_{l}, respectively. If $r_{l+1} \in V\left(S_{l}\right)-\left\{a_{l}, c_{l}\right\}$ then $A_{l+1}:=A_{l} \cup a_{l} A a_{l+1}, C_{l+1}:=C_{l} \cup c_{l} C c_{l+1}, R_{l+1}:=$ R_{l} are the desired paths in S_{l+1}. If $r_{l+1} \in V\left(D_{l+1}\right)-V(A \cup C)$ then let P_{l+1} be a path in D_{l+1} from r_{l} to r_{l+1} and internally disjoint from $A \cup C$; we see that $A_{l+1}:=A_{l} \cup a_{l} A a_{l+1}, C_{l+1}:=$ $C_{l} \cup c_{l} C c_{l+1}, R_{l+1}:=R_{l} \cup P_{l+1}$ are the desired paths in S_{l+1}. So we may assume by symmetry that $r_{l+1} \in V\left(a_{l+1} A a_{l}-a_{l+1}\right)$. Let Q_{l+1} be a path in D_{l+1} from r_{l} to a_{l+1} and internally disjoint from $A \cup C$. Now $R_{l+1}:=A_{l} \cup a_{l} A r_{l+1}, C_{l+1}:=C_{l} \cup c_{l} C c_{l+1}, A_{l+1}:=R_{l} \cup Q_{l+1}$ are the desired paths in S_{l+1}.

We claim that $J(A, C)$ has no vertex in $\left(a_{k} A y_{1} \cup c_{k} C y_{1}\right)-\left\{a_{k}, c_{k}\right\}$. For, suppose there exists $r \in V(J(A, C))$ such that $r \in V\left(a_{k} A y_{1}-a_{k}\right) \cup V\left(c_{k} C y_{1}-c_{k}\right)$. Then let A_{k}, C_{k}, R_{k} be independent (induced) paths in S_{k} from y_{1} to a_{k}, c_{k}, r, respectively. Let A^{\prime}, C^{\prime} be obtained from A, C by replacing $a_{k} A y_{1}, c_{k} C y_{1}$ with A_{k}, C_{k}, respectively. We see that $J\left(A^{\prime}, C^{\prime}\right)$ contains $J(A, C)$ and r, contradicting (c).

Therefore, $a \in V\left(z_{1} A a_{k}\right)$ and $c \in V\left(z_{1} C c_{k}\right)$. Moreover, no ($A \cup C$)-bridge of H in $L(A)$ intersects $a_{k} A y_{1}-a_{k}$ (by (10)). Let S_{k}^{\prime} be the union of S_{k} and all $(A \cup C)$-bridges of H contained in $L(C)$ and intersecting $c_{k} C y_{1}-c_{k}$. Then by (5) and (11), $N\left(S_{k}^{\prime}-\left\{a_{k}, c_{k}\right\}\right)-\left\{a_{k}, c_{k}, x_{2}, y_{2}\right\} \subseteq$ $V\left(x_{1} X z_{1}\right)$. Since G is 5 -connected, $N\left(S_{k}^{\prime}-\left\{a_{k}, c_{k}\right\}\right)-\left\{a_{k}, c_{k}, x_{2}, y_{2}\right\} \neq \emptyset$.

We may assume that $N\left(S_{k}^{\prime}-\left\{a_{k}, c_{k}\right\}\right)-\left\{y_{2}, x_{2}, a_{k}, c_{k}\right\} \neq\left\{x_{1}\right\}$. For, otherwise, G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a_{k}, c_{k}, x_{1}, x_{2}, y_{2}\right\}$ and $X \cup P \cup Q \subseteq G_{1}$, and $S_{k}^{\prime} \subseteq G_{2}$. Clearly, $\left|V\left(G_{1}\right)\right| \geq 7$. Since G is 5-connected and $y_{1} y_{2} \notin E(G),\left|V\left(G_{2}\right)\right| \geq 7$. Hence, the assertion follows from Lemma 2.4 ,

Thus, we may let $z \in N\left(S_{k}^{\prime}-\left\{a_{k}, c_{k}\right\}\right)-\left\{a_{k}, c_{k}, x_{1}, x_{2}, y_{2}\right\}$ such that $x_{1} X z$ is maximal. Then $z \neq z_{1}$. For otherwise, let $r \in V\left(S_{k}^{\prime}\right)-\left\{a_{k}, c_{k}\right\}$ such that $r z_{1} \in E(G)$. Let $r^{\prime}=r$ if $r \in V\left(S_{k}\right)$ and, otherwise, let $r^{\prime} \in V\left(c_{k} C y_{1}-c_{k}\right)$ with $r^{\prime} r \in E(G)$ (which exists by (11)). Let A_{k}, C_{k}, R_{k} be independent (induced) paths in S_{k} from y_{1} to a_{k}, c_{k}, r^{\prime}, respectively. Now $z_{2} B q \cup Q \cup a A z_{1} \cup\left(z_{1} r r^{\prime} \cup R_{k}\right) \cup C_{k} \cup c_{k} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1).

Let C^{*} be the subgraph of G induced by the union of $x_{1} X z-x_{1}$ and the vertices of $L(C)-C$ adjacent to $c_{k} C y_{1}-c_{k}$ (each of which, by (11), has exactly two neighbors on C and exactly two on $\left.x_{1} X z_{1}\right)$. Clearly, C^{*} is connected. Let $G_{z}=G\left[x_{1} X z \cup S_{k}^{\prime}+x_{2}\right]$ and let G_{z}^{\prime} be the graph obtained from $G_{z}-\left\{x_{1}, x_{2}\right\}$ by contracting C^{*} to a new vertex c^{*}.

Note that G_{z}^{\prime} has no disjoint paths from a_{k}, c_{k} to c^{*}, y_{1}, respectively; as otherwise, such paths, $c_{k} C c \cup P \cup p B y_{2}$, and $a_{k} A a \cup Q \cup q B z_{2}$ give two disjoint paths in H which would contradict the choice of Y, Z. Hence, by Lemma 2.1, there exists a collection \mathcal{A} of subsets of $V\left(G_{z}^{\prime}\right)-\left\{a_{k}, c_{k}, c^{*}, y_{1}\right\}$ such that $\left(G_{z}^{\prime}, \mathcal{A}, a_{k}, c_{k}, c^{*}, y_{1}\right)$ is 3-planar. We choose \mathcal{A} so that each member of \mathcal{A} is minimal and, subject to this, $|\mathcal{A}|$ is minimal.

We claim that $\mathcal{A}=\emptyset$. For, let $T \in \mathcal{A}$. By (10), $T \cap V(L(A))=\emptyset$. Moreover, $T \cap V(L(C))=$ \emptyset; for otherwise, by (11), $c^{*} \in N(T)$ and $|N(T) \cap V(C)|=2$; so by (11) again (and since C is induced in $H),\left(G_{z}^{\prime}, \mathcal{A}-\{T\}, a_{k}, c_{k}, c^{*}, y_{1}\right)$ is 3-planar, contradicting the choice of \mathcal{A}. Thus, $G[T]$ has a component, say T^{\prime}, such that $T^{\prime} \subseteq L(A, C)$. Hence, for any $t \in V\left(T^{\prime}\right), L(A, C)$ has a path from t to $a A y_{1}-y_{1}$ (respectively, $c C y_{1}-y_{1}$) and internally disjoint from $A \cup C$. Since G is 5 -connected, $\left\{x_{1}, x_{2}\right\} \cap N\left(T^{\prime}\right) \neq \emptyset$. Therefore, for some $i \in[2], G^{\prime}$ contains a path from x_{i} to $a A y_{1}-y_{1}$ as well as a path from x_{i} to $c C y_{1}-y_{1}$, both internally disjoint from $K \cup X$. However, this contradicts (9).

Hence, $\left(G_{z}^{\prime}, a_{k}, c_{k}, c^{*}, y_{1}\right)$ is planar. So by (6) and (11), $\left(G_{z}-x_{2}, a_{k}, c_{k}, z, x_{1}, y_{1}\right)$ is planar. By (9) and (10), N($\left.x_{2}\right) \cap V\left(S_{k}\right) \subseteq V\left(a_{k} A y_{1}\right)$. Therefore, since $\left(G_{z}-x_{2}\right)-a_{k} A y_{1}$ is connected (by (10)), $\left(G_{z}, a_{k}, c_{k}, z, x_{2}\right)$ is planar.

We claim that $\left\{a_{k}, c_{k}, z, x_{2}, y_{2}\right\}$ is a 5 -cut in G. For, otherwise, by (7) and (9), G^{\prime} has a path S_{1} from x_{1} to $z_{1} C c_{k}-\left\{z_{1}, c_{k}\right\}$ and internally disjoint from $K \cup X$. However, G^{\prime} has a path S_{2} from z to $c_{k} X y_{1}-c_{k}$ and internally disjoint from $K \cup X$. Now S_{1}, S_{2} contradict the second part of (6).

Hence, G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a_{k}, c_{k}, z, x_{2}, y_{2}\right\}, B^{\prime} \cup P \cup$ $Q \cup X \subseteq G_{1}$, and $G_{z} \subseteq G_{2}$. Clearly, $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$. So (i) or (ii) or (iii) follows from Lemma 2.3 .

Now that we have established (12), the remainder of this proof will make heavy use of Q^{\prime}. Our next goal is to obtain structure around z_{1}, which is done using claims (13) - (17). We may assume that
(13) $x_{1} z_{1} \in E(X), w \in V(A)-\left\{y_{1}, z_{1}\right\}$ for any choice of W in (7), and G^{\prime} has no path from x_{2} to $(A \cup C)-y_{1}$ and internally disjoint from $K \cup Q^{\prime} \cup X$.

Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Suppose $x_{1} z_{1} \notin E(X)$. Let $x_{1} s \in E(X)$. By (6), G has a path S from s to some $s^{\prime} \in V(C)-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup Q^{\prime} \cup X$ $\left(\right.$ as $\left.Q^{\prime} \subseteq J(A, C)\right)$. Hence, $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(P_{2} \cup P \cup c C s^{\prime} \cup S \cup s x_{1}\right) \cup(A \cup$ $\left.z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Now suppose W is a path in (7) ending at $w \in V(C)-\left\{y_{1}, z_{1}\right\}$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup\right.$
$\left.q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(P_{2} \cup P \cup c C w \cup W\right) \cup\left(A \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Finally, suppose G^{\prime} has a path S from x_{2} to some $s \in V(A \cup C)-\left\{y_{1}\right\}$ and internally disjoint from $K \cup Q^{\prime} \cup X$. If $s \in V\left(A-y_{1}\right)$ then $z_{1} x_{1} \cup z_{1} X y_{2} \cup C \cup\left(z_{1} A s \cup S\right) \cup\left(Q^{\prime} \cup q^{\prime} Q q \cup\right.$ $\left.q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. If $s \in V\left(C-y_{1}\right)$ then $z_{1} x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C s \cup S\right) \cup\left(Q^{\prime} \cup q^{\prime} Q q \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.
(14) We may assume that G^{\prime} has no path from $y_{2} X z_{2}$ to $(A \cup C)-y_{1}$ and internally disjoint from $K \cup Q^{\prime} \cup X$, and no path from $y_{2} X z_{1}-z_{1}$ to $A-z_{1}$ and internally disjoint from $K \cup Q^{\prime} \cup X$.

First, suppose S is a path in G^{\prime} from some $s \in V\left(y_{2} X z_{2}\right)$ to some $s^{\prime} \in V(A \cup C)-\left\{y_{1}\right\}$ and internally disjoint from $K \cup Q^{\prime} \cup X$. Then $s \neq y_{2}$ as $N_{G^{\prime}}\left(y_{2}\right)=\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}$. If $s^{\prime} \in V\left(C-y_{1}\right)$ then $z_{1} x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C s^{\prime} \cup S \cup s X x_{2}\right) \cup\left(Q^{\prime} \cup q^{\prime} Q q \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. If $s^{\prime} \in V\left(A-y_{1}\right)$ then $z_{1} x_{1} \cup z_{1} X y_{2} \cup$ $C \cup\left(z_{1} A s^{\prime} \cup S \cup s X x_{2}\right) \cup\left(Q^{\prime} \cup q^{\prime} Q q \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Now suppose S is a path in G^{\prime} from $s \in V\left(y_{2} X z_{1}-z_{1}\right)$ to $s^{\prime} \in V\left(A-z_{1}\right)$ and internally disjoint from $K \cup Q^{\prime} \cup X$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup$ $\left(P_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(P_{2} \cup P \cup c C z_{1} \cup z_{1} x_{1}\right) \cup\left(y_{1} A s^{\prime} \cup S \cup s X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.
(15) We may assume that

- $J(A, C) \cap\left(z_{1} C c-c\right)=\emptyset$,
- any path in $J(A, C)$ from $A-\left\{y_{1}, z_{1}\right\}$ to $(P-c) \cup(Q-a) \cup\left(Q^{\prime}-y_{1}\right) \cup B$ and internally disjoint from $K \cup Q^{\prime}$ must end on $\left(Q \cup Q^{\prime}\right)-q$, and
- for any $(A \cup C)$-bridge D of H with $D \neq J(A, C)$, if $V(D) \cap V\left(z_{1} C c-c\right) \neq \emptyset$ and $u \in V(D) \cap V\left(z_{1} A y_{1}-z_{1}\right)$ then $J(A, C) \cap\left(z_{1} A u-\left\{z_{1}, u\right\}\right)=\emptyset$.

First, suppose there exists $s \in V(J(A, C)) \cap V\left(z_{1} C c-c\right)$. Then H has a path S from s to some $s^{\prime} \in V(P-c) \cup V(Q-a) \cup V\left(Q^{\prime}-y_{1}\right) \cup V\left(B-y_{2}\right)$ and internally disjoint from $K \cup Q^{\prime}$. If $s^{\prime} \in V\left(Q^{\prime}-y_{1}\right) \cup V(Q-a) \cup V\left(z_{2} B p-p\right)$ then $S \cup\left(Q^{\prime}-y_{1}\right) \cup(Q-a) \cup\left(z_{2} B p-p\right)$ contains a path S^{\prime} from s to z_{2}; so $S^{\prime} \cup s C z_{1} \cup A \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1). Hence, $s^{\prime} \in V(P-c) \cup V\left(y_{2} B p-y_{2}\right)$ and, by (2), $s=z_{1}$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$ (if $s^{\prime} \in V(P-c)$) or $q^{*}=s^{\prime}$ (if $s^{\prime} \in V\left(y_{2} B p\right)-\left\{p, y_{2}\right\}$). Then $S \cup(P-c) \cup P_{2}$ contains a path S^{\prime} from z_{1} to z_{2}. Let W, w be given as in (7). By (13), $w \in V(A)-\left\{y_{1}, z_{1}\right\}$. Now $z_{2} x_{2} \cup z_{2} X y_{2} \cup z_{1} x_{1} \cup z_{1} X y_{2} \cup S^{\prime} \cup\left(P_{1} \cup Q \cup a A w \cup W\right) \cup(C \cup$ $\left.y_{1} x_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{2}, z_{1}, z_{2}$.

Now suppose S is path in $J(A, C)$ from $s \in V\left(A-\left\{y_{1}, z_{1}\right\}\right)$ to $s^{\prime} \in V(P-c) \cup V(B-q)$ and internally disjoint from $K \cup Q^{\prime}$. Since $N_{G^{\prime}}\left(y_{2}\right)=\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}, s^{\prime} \neq y_{2}$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$ (if $s^{\prime} \in V(P-c)$) or $q^{*}=s^{\prime}$ (if $s^{\prime} \in V(B-q)$). Let S^{\prime} be a path in $P_{2} \cup S \cup(P-c)$ from s to z_{2}. Let W, w be given as in (7). By (13), $w \in V(A)-\left\{y_{1}, z_{1}\right\}$. Hence, $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(S^{\prime} \cup s A w \cup W\right) \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Finally, suppose D is some $(A \cup C)$-bridge of H with $D \neq J(A, C), v \in V(D) \cap V\left(z_{1} C c-c\right)$, and $u \in V(D) \cap V\left(z_{1} A y_{1}-z_{1}\right)$. Then D has a path T from v to u and internally disjoint from $K \cup Q^{\prime}$. If there exists $s \in V(J(A, C)) \cap V\left(z_{1} A u-\left\{z_{1}, u\right\}\right)$ then $J(A, C)$ has a path S from s to some $s^{\prime} \in V(Q-a)$ and internally disjoint from K. Now $z_{2} B q \cup q Q s^{\prime} \cup S \cup s A z_{1} \cup z_{1} C v \cup$ $T \cup u A y_{1} \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1).
(16) We may assume $L(A)=\emptyset$.

Suppose $L(A) \neq \emptyset$. For each $(A \cup C)$-bridge R of H contained in $L(A)$, let $a_{1}(R), a_{2}(R) \in$ $V(R \cap A)$ with $a_{1}(R) A a_{2}(R)$ maximal. Let R_{1}, \ldots, R_{m} be a maximal sequence of $(A \cup C)$ bridges of H contained in $L(A)$, such that for $i=2, \ldots, m, R_{i}$ contains an internal vertex of $\bigcup_{j=1}^{i-1}\left(a_{1}\left(R_{j}\right) A a_{2}\left(R_{j}\right)\right)$ (which is a path). Let $a_{1}, a_{2} \in V(A)$ such that $\bigcup_{j=1}^{m} a_{1}\left(R_{j}\right) A a_{2}\left(R_{j}\right)=$ $a_{1} A a_{2}$. Let $L=\bigcup_{j=1}^{m} R_{j}$.

By (c), $J(A, C) \cap\left(a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}\right)=\emptyset$. By (d), $L(A, C) \cap\left(a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}\right)=\emptyset$. By (10), $a_{1}, a_{2} \in V\left(z_{1} A a\right)$. So $z_{1} \notin N\left(L \cup a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}\right)$. Hence by (14), $V\left(z_{1} X z_{2}-y_{2}\right) \cap$ $N\left(L \cup a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}\right)=\emptyset$. Ву (13), $x_{2} \notin N\left(L \cup a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}\right)$. Thus, $\left\{a_{1}, a_{2}, x_{1}, y_{2}\right\}$ is a cut in G separating L from X, which is a contradiction (since G is 5 -connected).

$$
\begin{equation*}
z_{1} c \in E(C), z_{1} y_{2} \in E(G), \text { and } z_{1} \text { has degree } 5 \text { in } G \tag{17}
\end{equation*}
$$

Let C^{*} be the union of $z_{1} C c$ and all $(A \cup C)$-bridges of H intersecting $z_{1} C c-c$. By (15), $V\left(C^{*} \cap J(A, C)\right)=\{c\}$.

Suppose (17) fails. If $C^{*}=z_{1} C c$ then, since A, C are induced paths and $L(A)=\emptyset($ by $(16))$, $z_{1} y_{2} \in E(G)$ and $z_{1} C c \neq z_{1} c$; so any vertex of $z_{1} C c-\left\{c, z_{1}\right\}$ would have degree 2 in G (by (15)), a contradiction. So $C^{*}-z_{1} C c \neq \emptyset$. Since $G^{\prime}-X$ is 2 -connected, $\left(C^{*}-z_{1} C c\right) \cap\left(A-z_{1}\right) \neq \emptyset$ by (c) (and since $J(A . C) \cap \cap(z C c-c)=\emptyset$ by (15)). Moreover, if $\left|V\left(z_{1} C c\right)\right| \geq 3$ then there is a path in C^{*} from $z_{1} C c-\left\{c, z_{1}\right\}$ to $A-z_{1}$ and internally disjoint from $A \cup C$.

Let $a^{*} \in V\left(A \cap C^{*}\right)$ with $a^{*} A y_{1}$ minimal, and let $u \in V\left(z_{1} X y_{2}\right)$ with $u X y_{2}$ minimal such that u is a neighbor of $\left(C^{*}-c\right) \cup\left(z_{1} A a^{*}-a^{*}\right)$.

We may assume that $\left\{a^{*}, c, u, x_{1}, y_{2}\right\}$ is a 5 -cut in G. First, note, by (15), that $J(A, C) \cap$ $\left(\left(z_{1} A a^{*}-a^{*}\right) \cup\left(z_{1} C c-c\right)\right)=\emptyset$ (in particular, $a^{*} \in V\left(z_{1} A a\right)$). Hence, if $u=z_{1}$ then it is clear from (d), (13) and (14) that $\left\{a^{*}, c, u, x_{1}, y_{2}\right\}$ is a 5 -cut in G. So we may assume $u \neq z_{1}$. Then G^{\prime} contains a path T from u to $u^{\prime} \in V\left(A-z_{1}\right)$ and internally disjoint from $A \cup c C y_{1} \cup P \cup Q \cup Q^{\prime} \cup B^{\prime}$. Suppose $\left\{a^{*}, c, u, x_{1}, y_{2}\right\}$ is not a 5 -cut in G. Then by (d), (13) and (14), G^{\prime} has a path R from $r \in V\left(z_{1} X u-u\right)$ to $r^{\prime} \in V(P-c) \cup V(Q-a) \cup V\left(Q^{\prime}-y_{1}\right) \cup V\left(B^{\prime}\right)$ and internally disjoint from $K \cup X$. Note that $r^{\prime} \neq y_{2}$ as $N_{G^{\prime}}\left(y_{2}\right)=\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}$. If $r^{\prime} \in V\left(B^{\prime}-q\right)$ then let P_{1}, P_{2} be the paths in (4) with $q^{*}=r^{\prime}$; now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup q Q q^{\prime} \cup\right.$ $\left.Q^{\prime}\right) \cup\left(P_{2} \cup R \cup r X x_{1}\right) \cup\left(y_{1} A u^{\prime} \cup T \cup u X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. If $r^{\prime} \in V(P-c)$ then let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$; now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(P_{2} \cup p P r^{\prime} \cup R \cup r X x_{1}\right) \cup\left(y_{1} A u^{\prime} \cup T \cup u X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. Now assume $r^{\prime} \in V(Q-a) \cup V\left(Q^{\prime}-y_{1}\right)$. Then $(Q-a) \cup\left(Q^{\prime}-y_{1}\right) \cup R$ contains a path R^{\prime} from r to q. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$; now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup R^{\prime} \cup r X x_{1}\right) \cup\left(P_{2} \cup P \cup c C y_{1}\right) \cup\left(y_{1} A u^{\prime} \cup T \cup u X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Thus, G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a^{*}, c, u, x_{1}, y_{2}\right\}, u X x_{2} \cup P \cup Q \subseteq$ G_{1}, and $C^{*} \cup z_{1} C c \cup z_{1} A a^{*} \subseteq G_{2}$. Suppose $G_{2}-y_{2}$ contains disjoint paths T_{1}, T_{2} from u, x_{1}
to a^{*}, c, respectively. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup\right.$ $\left.q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(P_{2} \cup P \cup T_{2}\right) \cup\left(y_{1} A a^{*} \cup T_{1} \cup u X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. So we may assume that such T_{1}, T_{2} do not exist. Then by Lemma 2.1, ($G_{2}-y_{2}, u, x_{1}, a^{*}, c$) is planar (as G is 5 -connected). If $\left|V\left(G_{2}\right)\right| \geq 7$ then, by Lemma 2.3, (i) or (ii) or (iii) holds. Hence, we may assume that $\left|V\left(G_{2}\right)\right|=6$ and, hence, we have (17).

We have now forced a structure around z_{1}. Next, we study the structure of $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ to complete the proof of Theorem 1.1. We may assume that
(18) $\left(G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right], p, q, z_{2}, y_{2}\right)$ is 3-planar.

For, otherwise, by Lemma 2.1, $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has disjoint paths R_{1}, R_{2} from q, p to y_{2}, z_{2}, respectively. Now $z_{1} x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C c \cup P \cup R_{2} \cup z_{2} x_{2}\right) \cup\left(R_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. So we may assume (18).

Since G is 5 -connected, G is $\left(5, V\left(K \cup Q^{\prime} \cup y_{2} X x_{2} \cup z_{1} x_{1}\right)\right)$-connected. Recall that $w_{1} y_{2} \in$ $E\left(x_{1} X y_{2}\right)$. Then $w_{1} y_{2}$ and $w_{1} X z_{1}$ are independent paths in G from w_{1} to y_{2}, z_{1}, respectively. So by Lemma 2.6, G has five independent paths $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$ from w_{1} to $z_{1}, y_{2}, z_{3}, z_{4}, z_{5}$, respectively, and internally disjoint from $K \cup Q^{\prime} \cup y_{2} X x_{2} \cup z_{1} x_{1}$, where $z_{3}, z_{4}, z_{5} \in V\left(K \cup Q^{\prime} \cup\right.$ $y_{2} X x_{2} \cup z_{1} x_{1}$). Note that we may assume $Z_{2}=w_{1} y_{2}$. Hence, $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$ are paths in G^{\prime}. By the fact that X is induced, by (14), and by (5) and (17), $z_{3}, z_{4}, z_{5} \in V(P) \cup V(Q-a) \cup$ $V\left(Q^{\prime}\right) \cup V\left(B^{\prime}-y_{2}\right)$. Recall that $L(A)=\emptyset$ from (16), and recall W and w from (7) and (13).
(19) We may assume that at least two of Z_{3}, Z_{4}, Z_{5} end in $B^{\prime}-y_{2}$.

First, suppose at least two of Z_{3}, Z_{4}, Z_{5} end on P. Without loss of generality, let c, z_{3}, z_{4}, p occur on P in this order. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $\left(Z_{1} \cup z_{1} x_{1}\right) \cup Z_{2} \cup$ $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(Z_{4} \cup z_{4} P p \cup P_{2}\right) \cup\left(Z_{3} \cup z_{3} P c \cup c C y_{1} \cup y_{1} x_{2}\right) \cup\left(P_{1} \cup Q \cup a A w \cup W\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{2}, z_{2}$.

Now assume at least two of Z_{3}, Z_{4}, Z_{5} are on $Q \cup Q^{\prime}$, say Z_{3} and Z_{4}. Then $Z_{3} \cup Z_{4} \cup Q \cup Q^{\prime}$ contains two independent paths $Z_{3}^{\prime}, Z_{4}^{\prime}$ from w_{1} to z^{\prime}, q, respectively, where $z^{\prime} \in\left\{a, y_{1}\right\}$. Hence $\left(Z_{1} \cup z_{1} x_{1}\right) \cup Z_{2} \cup\left(Z_{3}^{\prime} \cup z^{\prime} A y_{1}\right) \cup\left(Z_{4}^{\prime} \cup q B z_{2} \cup z_{2} x_{2}\right) \cup\left(y_{2} B p \cup P \cup c C y_{1}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{1}, y_{2}$.

So we may assume that $z_{3} \in V\left(B^{\prime}\right)-\{p, q\}$, and hence $Z_{3}=w_{1} z_{3}$. Suppose none of Z_{4}, Z_{5} ends in $B^{\prime}-y_{2}$. Then we may assume $z_{4} \in V(P-p)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=z_{3}$. Then $\left(Z_{1} \cup z_{1} x_{1}\right) \cup Z_{2} \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(Z_{3} \cup P_{2}\right) \cup\left(P_{1} \cup Q \cup a A w \cup W\right) \cup\left(Z_{4} \cup z_{4} P c \cup\right.$ $\left.c C y_{1} \cup y_{1} x_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{2}, z_{2}$.
(20) We may assume that

- w_{1} has at most one neighbor in B^{\prime} that is in $q B z_{2}$ or separated from $y_{2} B p$ in $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ by a 2-cut contained in $q B z_{2}$, and
- w_{1} has at most one neighbor in B^{\prime} that is in $y_{2} B p-y_{2}$ or separated from $q B z_{2}$ in $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ by a 2 -cut contained in $y_{2} B p$.

Suppose there exist distinct $v_{1}, v_{2} \in N\left(w_{1}\right) \cap V\left(B^{\prime}\right)$ such that for $i \in[2], v_{i} \in V\left(q B z_{2}\right)$ or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2 -cut contained in $q B z_{2}$ and separating v_{i} from $y_{2} B p$. Then, since
$\left(G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right], p, q, z_{2}, y_{2}\right)$ is 3-planar (by (18)) and $H-y_{2}$ is 2-connected, $G^{\prime}\left[B^{\prime}+w_{1}\right]-y_{2} B p$ contains independent paths S_{1}, S_{2} from w_{1} to q, z_{2}, respectively. Now $w_{1} X x_{1} \cup w_{1} y_{2} \cup\left(S_{1} \cup\right.$ $\left.q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(S_{2} \cup z_{2} x_{2}\right) \cup\left(y_{1} C c \cup P \cup p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{1}, y_{2}$.

Now suppose there exist distinct $v_{1}, v_{2} \in N\left(w_{1}\right) \cap V\left(B^{\prime}\right)$ such that for $i \in[2], v_{i} \in V\left(y_{2} B p\right)$ or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-cut contained in $y_{2} B p$ and separating v_{i} from $q B z_{2}$. Then, since $\left(G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right], p, q, z_{2}, y_{2}\right)$ is 3-planar (by (18)) and $H-y_{2}$ is 2-connected, $G^{\prime}\left[B^{\prime}+w_{1}\right]$ $\left(q B z_{2}-z_{2}\right)$ has independent paths S_{1}, S_{2} from w_{1} to p, z_{2}, respectively. Now $w_{1} X x_{1} \cup w_{1} y_{2} \cup$ $z_{2} x_{2} \cup z_{2} X y_{2} \cup S_{2} \cup\left(S_{1} \cup P \cup c C y_{1} \cup y_{1} x_{2}\right) \cup\left(z_{2} B q \cup Q \cup a A w \cup W\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{2}, z_{2}$.
(21) $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-separation $\left(B_{1}, B_{2}\right)$ such that $N\left(w_{1}\right) \cap V\left(B^{\prime}-y_{2}\right) \subseteq V\left(B_{1}\right)$, $p B q \subseteq B_{1}$, and $y_{2} X z_{2} \subseteq B_{2}$.

Let $z \in N\left(w_{1}\right) \cap V\left(B^{\prime}\right)$ be arbitrary. If there exists a path S in $B^{\prime}-\left(p B y_{2} \cup\left(q B z_{2}-z_{2}\right)\right)$ from z_{2} to z then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(z_{2} B q \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(S \cup z w_{1} \cup w_{1} X x_{1}\right) \cup\left(y_{1} C c \cup P \cup p B y_{2}\right) \cup$ $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. So we may assume that such path S does not exist. Then, since $\left(G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right], p, q, z_{2}, y_{2}\right)$ is 3 -planar (by (18)) and $G^{\prime}-X$ is 2-connected, $z \in V\left(y_{2} X p \cup q B z_{2}\right)$ (in which case let $B_{z}^{\prime}=z$ and $B_{z}^{\prime \prime}=G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$), or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-separation $\left(B_{z}^{\prime}, B_{z}^{\prime \prime}\right)$ such that $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq y_{2} B p \cup q B z_{2} \cup y_{2} X z_{2}$, $z \in V\left(B_{z}^{\prime}-B_{z}^{\prime \prime}\right)$ and $z_{2} \in V\left(B_{z}^{\prime \prime}-B_{z}^{\prime}\right)$.

We claim that we may assume that w_{1} has exactly two neighbors in B^{\prime}, say v_{1}, v_{2}, such that $v_{1} \in V\left(y_{2} B p-y_{2}\right)$ or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-cut contained in $y_{2} B p$ and separating v_{1} from $q B z_{2}$, and $v_{2} \in V\left(q B z_{2}-z_{2}\right)$ or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-cut contained in $q B z_{2}$ and separating v_{2} from $y_{2} B p$. This follows from (20) if for every choice of $z, B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq y_{2} B p$ or $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq q B z_{2}$. So we may assume that there exists $v \in N\left(w_{1}\right) \cap V\left(B^{\prime}\right)$ such that $p B q \subseteq B_{v}^{\prime}$ and we choose v and ($B_{v}^{\prime}, B_{v}^{\prime \prime}$) with B_{v}^{\prime} maximal. If $p B q \subseteq B_{z}^{\prime}$ for all choices of z then, by (18), we have (21). Thus, we may assume that there exists $z \in N\left(w_{1}\right) \cap V\left(B^{\prime}\right)$ such that $p B q \nsubseteq B_{z}^{\prime}$ for any choice of ($B_{z}^{\prime}, B_{z}^{\prime \prime}$). Then $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq y_{2} B p$ or $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq q B z_{2}$. First, assume $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq q B z_{2}$. Then by the maximality of $B_{v}^{\prime}, B^{\prime}-y_{2} B p$ has independent paths T_{1}, T_{2} from z_{2} to q, z, respectively. Hence, $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(T_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(T_{2} \cup z w_{1} \cup w_{1} X x_{1}\right) \cup\left(y_{1} C c \cup P \cup p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. Now assume $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq y_{2} B p$. Then by (20), for any $t \in N\left(w_{1}\right) \cap V\left(B_{v}^{\prime}\right), t \notin V\left(y_{2} B p-y_{2}\right)$ and $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has no 2 -cut contained in $y_{2} B p$ and separating t from $q B z_{2}$. If for every choice of $t \in N\left(w_{1}\right) \cap V\left(B_{v}^{\prime}\right)$, we have $t \in V\left(q B z_{2}-z_{2}\right)$ or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-cut contained in $q B z_{2}$ and separating t from $y_{2} B p$ then the claim follows from (20). Hence, we may assume that t can be chosen so that $t \notin V\left(q B z_{2}-z_{2}\right)$ and $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has no 2-cut contained in $q B z_{2}$ and separating t from $y_{2} B p$. Then, by (18) and 2 -connectedness of $G^{\prime}-X, G\left[B^{\prime}+w_{1}\right]-\left(q B z_{2}-z_{2}\right)$ has independent paths S_{1}, S_{2} from w_{1} to p, z_{2}, respectively. Now $w_{1} X x_{1} \cup w_{1} y_{2} \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup S_{2} \cup\left(S_{1} \cup P \cup\right.$ $\left.c C y_{1} \cup y_{1} x_{2}\right) \cup\left(z_{2} B q \cup Q \cup a A w \cup W\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{2}, z_{2}$.

Thus, we may assume that $Z_{3}=w_{1} v_{1}, Z_{4}=w_{1} v_{2}$, and Z_{5} ends at some $v_{3} \in V(P \cup Q \cup$ $\left.Q^{\prime}\right)-\{a, p, q\}$. Suppose $v_{3} \in V(P-p)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=v_{1}$. Then $w_{1} X x_{1} \cup w_{1} y_{2} \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(w_{1} v_{1} \cup P_{2}\right) \cup\left(Z_{5} \cup v_{3} P c \cup c C y_{1} \cup y_{1} x_{2}\right) \cup\left(P_{1} \cup Q \cup a A w \cup\right.$ $W) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{2}, z_{2}$.

Now assume $v_{3} \in V\left(Q \cup Q^{\prime}\right)-\{a, q\}$. Then $\left(B^{\prime}-y_{2} B p\right) \cup Z_{5} \cup Q \cup Q^{\prime} \cup\left(A-z_{1}\right) \cup w_{1} v_{2}$ has independent paths R_{1}, R_{2} from w_{1} to y_{1}, z_{2}, respectively. So $w_{1} X x_{1} \cup w_{1} y_{2} \cup R_{1} \cup\left(R_{2} \cup z_{2} x_{2}\right) \cup$ $\left(y_{1} C c \cup P \cup p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{1}, y_{2}$. This completes the proof of (21).

By (21), let $V\left(B_{1} \cap B_{2}\right)=\left\{t_{1}, t_{2}\right\}$ with $t_{1} \in V\left(y_{2} B p\right)$ and $t_{2} \in V\left(q B z_{2}\right)$. Choose $\left\{t_{1}, t_{2}\right\}$ so that B_{2} is minimal. Then we may assume that $\left(G^{\prime}\left[B_{2}+x_{2}\right], t_{1}, t_{2}, x_{2}, y_{2}\right)$ is 3-planar. For, otherwise, by Lemma 2.1, $G^{\prime}\left[B_{2}+x_{2}\right]$ contains disjoint paths T_{1}, T_{2} from t_{1}, t_{2} to x_{2}, y_{2}, respectively. Then $z_{1} x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C c \cup P \cup p B t_{1} \cup T_{1}\right) \cup\left(Q^{\prime} \cup q^{\prime} Q q \cup q B t_{2} \cup T_{2}\right) \cup$ $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Suppose there exists $s s^{\prime} \in E(G)$ such that $s \in V\left(z_{1} X w_{1}-w_{1}\right)$ and $s^{\prime} \in V\left(B_{2}\right)-\left\{t_{1}, t_{2}\right\}$. Then $s^{\prime} \notin V(X)$, as X is induced in $G^{\prime}-x_{1} x_{2}$. By (19), (20) and (21), we may assume that $B_{1}-q B t_{2}$ contains a path R from z_{3} to p. By the minimality of B_{2} and 2-connectedness of $H-y_{2},\left(B_{2}-t_{1}\right)-\left(y_{2} X z_{2}-z_{2}\right)$ contains independent paths R_{1}, R_{2} from z_{2} to s^{\prime}, t_{2}, respectively. Now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(R_{1} \cup s^{\prime} s \cup s X x_{1}\right) \cup\left(R_{2} \cup t_{2} B q \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(y_{1} C c \cup P \cup R \cup z_{3} w_{1} y_{2}\right) \cup$ $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Thus, we may assume that $s s^{\prime}$ does not exist. Since G is 5 -connected, $\left\{t_{1}, t_{2}, y_{2}, x_{2}\right\}$ is not a cut. So H has a path T from some $t \in V\left(y_{2} X x_{2}\right)-\left\{y_{2}, x_{2}\right\}$ to some $t^{\prime} \in V\left(P \cup Q \cup Q^{\prime} \cup\right.$ $A \cup C)-\{p, q\}$ and internally disjoint from $K \cup Q^{\prime} . \mathrm{By}(14), t^{\prime} \notin V(A \cup C)-\left\{y_{1}\right\}$.

If $t^{\prime} \in V(P-p)$ then $z_{1} x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C c \cup c P t^{\prime} \cup T \cup t X x_{2}\right) \cup\left(Q^{\prime} \cup q^{\prime} Q q \cup q B y_{2}\right) \cup$ $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. So we assume $t^{\prime} \in$ $V\left(Q \cup Q^{\prime}\right)-\{a, q\}$.

If $q \neq q^{\prime}$ or $t^{\prime} \in V\left(Q^{\prime}\right)$ then $\left(T \cup Q \cup Q^{\prime}\right)-q$ has a path Q^{*} from t to y_{1}; now $z_{1} x_{1} \cup z_{1} X y_{2} \cup$ $A \cup\left(z_{1} C c \cup P \cup p B z_{2} \cup z_{2} x_{2}\right) \cup\left(Q^{*} \cup s X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. So assume $q=q^{\prime}$ and $t^{\prime} \in V(Q)-\{a, q\}$. Then $z_{1} x_{1} \cup z_{1} X y_{2} \cup C \cup$ $\left(z_{1} A a \cup a Q t^{\prime} \cup T \cup t X x_{2}\right) \cup\left(Q^{\prime} \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

References

[1] K. Chakravarti and N. Robertson, Covering three edges with a bond in a nonseparable graph, Annals of Discrete Math. (Deza and Rosenberg eds) (1979) 247.
[2] S. Curran and X. Yu, Non-separating cycles in 4-connected graphs, SIAM J. Discrete Math. 16 (2003) 616-629.
[3] D. He, Y. Wang and X. Yu, The Kelmans-Seymour conjecture I, special separations, Submitted.
[4] K. Kawarabayashi, Contractible edges and triangles in k-connected graphs, J. Combin. Theory Ser. B 85 (2002) 207-221.
[5] K. Kawarabayashi, O. Lee, and X. Yu, Non-separating paths in 4-connected graphs, Annals of Combinatorics 9 (2005) 47-56.
[6] A. K. Kelmans, Every minimal counterexample to the Dirac conjecture is 5 -connected, Lectures to the Moscow Seminar on Discrete Mathematics (1979).
[7] J. Ma and X. Yu, Independent paths and K_{5}-subdivisions, J. Combin. Theory Ser. B $\mathbf{1 0 0}$ (2010) 600-616.
[8] J. Ma and X. Yu, K_{5}-Subdivisions in graphs containing K_{4}^{-}, J. Combin. Theory Ser. B 103 (2013) 713-732.
[9] H. Perfect, Applications of Menger's graph theorem, J. Math. Analysis and Applications 22 (1968) 96-111.
[10] Robertson and P. S. Seymour, Graph Minors. IX. Disjoint crossed paths, J. Combin. Theory Ser. B 49 (1990) 40-77.
[11] P. D. Seymour, Private Communication with X. Yu.
[12] P. D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980) 293-309.
[13] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. Assoc. Comp. Mach. 27 (1980) 445-456.
[14] C. Thomassen, 2-Linked graphs, Europ. J. Combinatorics 1 (1980) 371-378.
[15] M. E. Watkins and D. M. Mesner, Cycles and connectivity in graphs, Canadian J. Math. 19 (1967) 1319-1328.

[^0]: *dhe9@math.gatech.edu; Partially supported by NSF grant through X. Yu
 ${ }^{\dagger}$ yanwang@gatech.edu; Partially supported by NSF grant through X. Yu
 ${ }^{\ddagger}$ yu@math.gatech.edu; Partially supported by NSF grants DMS-1265564 and CNS-1443894

