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Abstract

We use K−
4 to denote the graph obtained from K4 by removing an edge, and use TK5 to

denote a subdivision of K5. Let G be a 5-connected nonplanar graph and {x1, x2, y1, y2} ⊆
V (G) such that G[{x1, x2, y1, y2}] ∼= K−

4 with y1y2 /∈ E(G). Let w1, w2, w3 ∈ N(y2) −
{x1, x2} be distinct. We show that G contains a TK5 in which y2 is not a branch vertex, or
G−y2 contains K−

4 , or G has a special 5-separation, or G−{y2v : v /∈ {w1, w2, w3, x1, x2}}
contains TK5.
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1 Introduction

We use notation and terminology from [3]. In particular, for a graph K, we use TK to
denote a subdivision of K. The vertices in a TK corresponding to the vertices of K are
its branch vertices. Kelmans [6] and, independently, Seymour [11] conjectured that every 5-
connected nonplanar graph contains TK5. In [7, 8], this conjecture is shown to be true for
graphs containing K−4 .

In [3] we outline a strategy to prove the Kelmans-Seymour conjecture for graphs containing
no K−4 . Let G be a 5-connected nonplanar graph containing no K−4 . Then by a result of
Kawarabayashi [4], G contains an edge e such that G/e is 5-connected. If G/e is planar,
we can apply a discharging argument. So assume G/e is not planar. Let M be a maximal
connected subgraph of G such that G/M is 5-connected and nonplanar. Let z denote the
vertex representing the contraction of M , and let H = G/M . Then one of the following holds:

(a) H contains a K−4 in which z is of degree 2.

(b) H contains a K−4 in which z is of degree 3.

(c) H does not contain K−4 , and there exists T ⊆ H such that z ∈ V (T ), T ∼= K2 or T ∼= K3,
and H/T is 5-connected and planar.

(d) H does not contain K−4 , and for any T ⊆ H with z ∈ V (T ) and T ∼= K2 or T ∼= K3,
H/T is not 5-connected.

In this paper, we deal with (a) by taking advantage of the K−4 containing z. We prove the
following result, in which the vertex y2 plays the role of z above.

Theorem 1.1 Let G be a 5-connected nonplanar graph and {x1, x2, y1, y2} ⊆ V (G) such that
G[{x1, x2, y1, y2}] ∼= K−4 with y1y2 /∈ E(G). Then one of the following holds:

(i) G contains a TK5 in which y2 is not a branch vertex.

(ii) G− y2 contains K−4 .

(iii) G has a 5-separation (G1, G2) such that V (G1 ∩G2) = {y2, a1, a2, a3, a4}, and G2 is the
graph obtained from the edge-disjoint union of the 8-cycle a1b1a2b2a3b3a4b4a1 and the
4-cycle b1b2b3b4b1 by adding y2 and the edges y2bi for i ∈ [4].

(iv) For w1, w2, w3 ∈ N(y2)− {x1, x2}, G− {y2v : v /∈ {w1, w2, w3, x1, x2}} contains TK5.

Note that when Theorem 1.1 is applied later, G will be a graph obtained from a 5-connected
nonplanar graph by contracting a connected subgraph, and y2 represents that contraction. So
we need a TK5 in G to satisfy (i) or (iv) to produce a TK5 in the original graph. Note that
(ii) will not occur if the original graph is K−4 -free. Moreover, if (iii) occurs then we may apply
Proposition 1.3 in [3] to produce a TK5 in the original graph.

The arguments used in this paper to prove Theorem 1.1 is similar to those used in [7, 8].
Namely, we will find a substructure in the graph and use it to find the desired TK5. However,
since the TK5 we are looking for must use certain special edges at y2, the arguments here are
more complicated and make heavy use of the option (ii).
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We organize this paper as follows. In Section 2, we collect a few known results that will
be used in the proof of Theorem 1.1. We will produce an intermediate structure in G which
consists of eight special paths X,Y, Z,A,B,C, P,Q, see Figure 1 (where X is the path in bold
and Y,Z are not shown). In Section 3, we find the path X in G between x1 and x2 whose
deletion results in a graph satisfying certain connectivity requirement. In Section 4, we find
the paths Y,Z,A,B,C, P,Q in G. In Section 5, we use this structure to find the desired TK5

for Theorem 1.1.

2 Previous results

Let G be a graph and A ⊆ V (G), and let k be a positive integer. Let [k] = {1, 2, ..., k}. Let C
be a cycle in G with a fixed orientation (so that we can speak of clockwise and anticlockwise
directions). For two vertices x, y ∈ V (C), xCy denotes the subpath of C from x to y in
clockwise order. (If x = y then xCy denotes the path consisting of the single vertex x.) Recall
from [3] that G is (k,A)-connected if, for any cut T of G with |T | < k, every component
of G − T contains a vertex from A. We say that (G,A) is plane if G is drawn in the plane
with no crossing edges such that the vertices in A are incident with the unbounded face of
G. Moreover, for vertices a1, . . . , ak ∈ V (G), we say (G, a1, . . . , ak) is plane if G is drawn in a
closed disc in the plane with no crossing edges such that a1, . . . , ak occur on the boundary of
the disc in this cyclic order. We say that (G,A) is planar if G has a plane representation such
that (G,A) is plane. Similarly, (G, a1, . . . , ak) is planar if G has a plane representation such
that (G, a1, . . . , ak) is plane.

In this section, we list a few known results that we need. We begin with a technical notion.
A 3-planar graph (G,A) consists of a graph G and a collection A = {A1, . . . , Ak} of pairwise
disjoint subsets of V (G) (possibly A = ∅) such that

• for distinct i, j ∈ [k], N(Ai) ∩Aj = ∅,

• for i ∈ [k], |N(Ai)| ≤ 3, and

• if p(G,A) denotes the graph obtained from G by (for each i ∈ [k]) deleting Ai and adding
new edges joining every pair of distinct vertices in N(Ai), then p(G,A) can be drawn in
a closed disc with no crossing edges.

If, in addition, b1, . . . , bn are vertices in G such that bi /∈ Aj for all i ∈ [n] and j ∈ [k], p(G,A)
can be drawn in a closed disc in the plane with no crossing edges, and b1, . . . , bn occur on the
boundary of the disc in this cyclic order, then we say that (G,A, b1, . . . , bn) is 3-planar. If
there is no need to specify A, we will simply say that (G, b1, . . . , bn) is 3-planar.

It is easy to see that if (G,A, b1, . . . , bn) is 3-planar and G is (4, {b1, . . . , bn})-connected
then A = ∅ and (G, b1, . . . , bn) is planar.

We can now state the following result of Seymour [12]; equivalent versions can be found
in [1, 13,14].

Lemma 2.1 Let G be a graph and s1, s2, t1, t2 be distinct vertices of G. Then exactly one of
the following holds:

(i) G contains disjoint paths from s1 to t1 and from s2 to t2.
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(ii) (G, s1, s2, t1, t2) is 3-planar.

We also state a generalization of Lemma 2.1, which is a consequence of Theorems 2.3 and
2.4 in [10].

Lemma 2.2 Let G be a graph, v1, . . . , vn ∈ V (G) be distinct, and n ≥ 4. Then exactly one of
the following holds:

(i) There exist 1 ≤ i < j < k < l ≤ n such that G contains disjoint paths from vi, vj to
vk, vl, respectively.

(ii) (G, v1, v2, . . . , vn) is 3-planar.

The next result is Theorem 1.1 in [3].

Lemma 2.3 Let G be a 5-connected nonplanar graph and let (G1, G2) be a 5-separation in G.
Suppose |V (Gi)| ≥ 7 for i ∈ [2], a ∈ V (G1 ∩ G2), and (G2 − a, V (G1 ∩ G2) − {a}) is planar.
Then one of the following holds:

(i) G contains a TK5 in which a is not a branch vertex.

(ii) G− a contains K−4 .

(iii) G has a 5-separation (G′1, G
′
2) such that V (G′1 ∩G′2) = {a, a1, a2, a3, a4}, G1 ⊆ G′1, and

G′2 is the graph obtained from the edge-disjoint union of the 8-cycle a1b1a2b2a3b3a4b4a1
and the 4-cycle b1b2b3b4b1 by adding a and the edges abi for i ∈ [4].

Another result we need is Theorem 1.2 from [3].

Lemma 2.4 Let G be a 5-connected graph and (G1, G2) be a 5-separation in G. Suppose
that |V (Gi)| ≥ 7 for i ∈ [2] and G[V (G1 ∩ G2)] contains a triangle aa1a2a. Then one of the
following holds:

(i) G contains a TK5 in which a is not a branch vertex.

(ii) G− a contains K−4 .

(iii) G has a 5-separation (G′1, G
′
2) such that V (G′1 ∩ G′2) = {a, a1, a2, a3, a4} and G′2 is the

graph obtained from the edge-disjoint union of the 8-cycle a1b1a2b2a3b3a4b4a1 and the
4-cycle b1b2b3b4b1 by adding a and the edges abi for i ∈ [4].

(iv) For any distinct u1, u2, u3 ∈ N(a)− {a1, a2}, G− {av : v 6∈ {a1, a2, u1, u2, u3}} contains
TK5.

We also need Proposition 4.2 from [3].

Lemma 2.5 Let G be a 5-connected nonplanar graph and a ∈ V (G) such that G−a is planar.
Then one of the following holds:

(i) G contains a TK5 in which a is not a branch vertex.
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(ii) G− a contains K−4 .

(iii) G has a 5-separation (G1, G2) such that V (G1 ∩ G2) = {a, a1, a2, a3, a4} and G2 is the
graph obtained from the edge-disjoint union of the 8-cycle a1b1a2b2a3b3a4b4a1 and the
4-cycle b1b2b3b4b1 by adding a and the edges abi for i ∈ [4].

We will make use of the following result of Perfect [9] on independent paths. A collection
of paths in a graph are said to be independent if no internal vertex of a path in this collection
belongs to another path in the collection.

Lemma 2.6 Let G be a graph, u ∈ V (G), and A ⊆ V (G − u). Suppose there exist k inde-
pendent paths from u to distinct a1, . . . , ak ∈ A, respectively, and otherwise disjoint from A.
Then for any n ≥ k, if there exist n independent paths P1, . . . , Pn in G from u to n distinct
vertices in A and otherwise disjoint from A then P1, . . . , Pn may be chosen so that ai ∈ V (Pi)
for i ∈ [k].

We will also use a result of Watkins and Mesner [15] on cycles through three vertices.

Lemma 2.7 Let G be a 2-connected graph and let y1, y2, y3 be three distinct vertices of G.
Then there is no cycle in G containing {y1, y2, y3} if, and only if, one of the following state-
ments holds:

(i) There exists a 2-cut S in G and there exist pairwise disjoint subgraphs Dyi of G − S,
i = 1, 2, 3, such that yi ∈ V (Dyi) and each Dyi is a union of components of G− S.

(ii) There exist 2-cuts Syi of G, i = 1, 2, 3, z ∈ Sy1∩Sy2∩Sy3, and pairwise disjoint subgraphs
Dyi of G, such that yi ∈ V (Dyi), each Dyi is a union of components of G − Syi, and
Sy1 − {z}, Sy2 − {z}, Sv − {z} are pairwise disjoint.

(iii) There exist pairwise disjoint 2-cuts Syi in G, i = 1, 2, 3, and pairwise disjoint subgraphs
Dyi of R − Syi such that yi ∈ V (Dyi), each Dyi is a union of components of G − Syi,
and G− V (Dy1 ∪Dy2 ∪Dy3) has precisely two components, each containing exactly one
vertex from Syi for i ∈ [3].

3 Nonseparating paths

Our first step for proving Theorem 1.1 is to find the path X in G (see Figure 1) whose removal
does not affect connectivity too much.

We need the concept of chain of blocks. Let G be a graph and {u, v} ⊆ V (G). We say that
a sequence of blocks B1, . . . , Bk in G is a chain of blocks from u to v if either k = 1 and u, v ∈
V (B1) are distinct, or k ≥ 2, u ∈ V (B1)−V (B2), v ∈ V (Bk)−V (Bk−1), |V (Bi)∩V (Bi+1)| = 1
for i ∈ [k − 1], and V (Bi) ∩ V (Bj) = ∅ for any i, j ∈ [k] with |i− j| ≥ 2. For convenience, we

also view this chain of blocks as
⋃k

i=1Bi, a subgraph of G.
The following result was implicit in [2,5]. Since it has not been stated and proved explicitly

before, we include a proof. We need the concept of a bridge. Let G be a graph and H a
subgraph of G. Then an H-bridge of G is a subgraph of G that is either induced by an edge
of G− E(H) with both ends in V (H), or induced by the edges in some component of G−H
as well as those edges of G from that component to H.
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Lemma 3.1 Let G be a graph and let x1, x2, y1, y2 ∈ V (G) be distinct such that G is (4, {x1, x2, y1, y2})-
connected. Suppose there exists a path X in G−x1x2 from x1 to x2 such that G−X contains
a chain of blocks B from y1 to y2. Then one of the following holds:

(i) There is a 4-separation (G1, G2) in G such that B + {x1, x2} ⊆ G1, |V (G2)| ≥ 6, and
(G2, V (G1 ∩G2)) is planar.

(ii) There exists an induced path X ′ in G− x1x2 from x1 to x2 such that G−X ′ is a chain
of blocks from y1 to y2 and contains B.

Proof. Without loss of generality, we may assume that X is induced in G− x1x2. We choose
such X that

(1) B is maximal,

(2) the smallest size of a component of G−X disjoint from B (if exists) is minimal, and

(3) the number of components of G−X is minimal.

We claim that G − X is connected. For, suppose G − X is not connected and let D be
a component of G −X other than B such that |V (D)| is minimal. Let u, v ∈ N(D) ∩ V (X)
such that uXv is maximal. Since G is (4, {x1, x2, y1, y2})-connected, uXv − {u, v} contains a
neighbor of some component of G−X other than D. Let Q be an induced path in G[D+{u, v}]
from u to v, and let X ′ be obtained from X by replacing uXv with Q. Then B is contained
in B′, the chain of blocks in G − X ′ from y1 to y2. Moreover, either the smallest size of a
component of G − X ′ disjoint from B′ is smaller than the smallest size of a component of
G −X disjoint from B, or the number of components of G −X ′ is smaller than the number
of components of G − X. This gives a contradiction to (1) or (2) or (3). Hence, G − X is
connected.

If G−X = B, we are done with X ′ := X. So assume G−X 6= B. By (1), each B-bridge of
G−X has exactly one vertex in B. Thus, for each B-bridge D of G−X, let bD ∈ V (D)∩V (B)
and uD, vD ∈ N(D − bD) ∩ V (X) such that uDXvD is maximal.

We now define a new graph B such that V (B) is the set of all B-bridges of G − X, and
two B-bridges in G−X, C and D, are adjacent if uCXvC − {uC , vC} contains a neighbor of
D − bD or uDXvD − {uD, vD} contains a neighbor of C − bC . Let D be a component of B.
Then

⋃
D∈V (D) uDXvD is a subpath of X. Let SD be the union of {bD : D ∈ V (D)} and the

set of neighbors in B of the internal vertices of
⋃

D∈V (D) uDXvD.
Suppose B has a component D such that |SD| ≤ 2. Let u, v ∈ V (X) such that uXv =⋃

D∈V (D) uDXvD. Then {u, v} ∪ SD is a cut in G. Since G is (4, {x1, x2, y1, y2})-connected,
|SD| = 2. So there is a 4-separation (G1, G2) in G such that V (G1 ∩ G2) = {u, v} ∪ SD,
B + {x1, x2} ⊆ G1, and D ⊆ G2 for D ∈ V (D). Hence |V (G2)| ≥ 6. If G2 has disjoint
paths S1, S2, with S1 from u to v and S2 between the vertices in SD, then choose S1 to be
induced and let X ′ = x1Xu ∪ S1 ∪ vXx2; now B ∪ S2 is contained in the chain of blocks in
G −X ′ from y1 to y2, contradicting (1). So no such two paths exist. Hence, by Lemma 2.1,
(G2, V (G1 ∩G2)) is planar and thus (i) holds.

Therefore, we may assume that |SD| ≥ 3 for any component D of B. Hence, there exist a
component D of B and D ∈ V (D) with the following property: uDXvD − {uD, vD} contains
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vertices w1, w2 and SD contains distinct vertices b1, b2 such that for each i ∈ [2], {bi, wi} is
contained in a (B ∪X)-bridge of G disjoint from D − bD. Let P denote an induced path in
G[D + {uD, vD}] between uD and vD, and let X ′ be obtained from X by replacing uDXvD
with P . Clearly, the chain of blocks in G−X ′ from y1 to y2 contains B as well as a path from
b1 to b2 and internally disjoint from D ∪B. This is a contradiction to (1).

We now show that the conclusion of Theorem 1.1 holds or we can find a path X in G such
that y1, y2 /∈ V (X) and (G− y2)−X is 2-connected.

Lemma 3.2 Let G be a 5-connected nonplanar graph and let x1, x2, y1, y2 ∈ V (G) be distinct
such that G[{x1, x2, y1, y2}] ∼= K−4 with y1y2 /∈ E(G). Then one of the following holds:

(i) G contains a TK5 in which y2 is not a branch vertex.

(ii) G− y2 contains K−4 .

(iii) G has a 5-separation (G1, G2) such that V (G1 ∩G2) = {y2, a1, a2, a3, a4} and G2 is the
graph obtained from the edge-disjoint union of the 8-cycle a1b1a2b2a3b3a4b4a1 and the
4-cycle b1b2b3b4b1 by adding y2 and the edges y2bi for i ∈ [4].

(iv) For w1, w2, w3 ∈ N(y2)−{x1, x2}, G−{y2v : v /∈ {w1, w2, w3, x1, x2}} contains TK5, or
G − x1x2 has an induced path X from x1 to x2 such that y1, y2 /∈ V (X), w1, w2, w3 ∈
V (X), and (G− y2)−X is 2-connected.

Proof. First, we may assume that

(1) G−x1x2 has an induced path X from x1 to x2 such that y1, y2 /∈ V (X) and (G−y2)−X
is 2-connected.

To see this, let z ∈ N(y1) − {x1, x2}. Since G is 5-connected, (G − x1x2) − {y1, y2, z} has a
path X from x1 to x2. Thus, we may apply Lemma 3.1 to G− y2, X and B = y1z.

Suppose (i) of Lemma 3.1 holds. Then G has a 5-separation (G1, G2) such that y2 ∈ V (G1∩
G2), {x1, x2, y1, z} ⊆ V (G1) and y1z ∈ E(G1), |V (G2)| ≥ 7, and (G2 − y2, V (G1 ∩G2)−{y2})
is planar. If |V (G1)| ≥ 7 then, by Lemma 2.3, (i) or (ii) or (iii) holds. If |V (G1)| = 5 then
G1 − y2 has a K−4 or G − y2 is planar; hence, (ii) holds in the former case, and (i) or (ii)
or (iii) holds in the latter case by Lemma 2.5. Thus we may assume that |V (G1)| = 6. Let
v ∈ V (G1 − G2). Then v 6= y2. Since G is 5-connected, v must be adjacent to all vertices in
V (G1 ∩ G2). Thus, v 6= y1 as y1y2 /∈ E(G). Now |V (G1 ∩ G2) ∩ {x1, x2, z}| ≥ 2. Therefore,
G[{v, y1} ∪ (V (G1 ∩G2) ∩ {x1, x2, z})] contains K−4 ; so (ii) holds.

So we may assume that (ii) of Lemma 3.1 holds. Then (G − y2) − x1x2 has an induced
path, also denoted by X, from x1 to x2 such that (G− y2)−X is a chain of blocks from y1 to
z. Since zy1 ∈ E(G), (G− y2)−X is in fact a block. If V ((G− y2)−X) = {y1, z} then, since
G is 5-connected and X is induced in (G − y2) − x1x2, G[{x1, x2, z, y1}] ∼= K4; so (ii) holds.
This completes the proof of (1).

We wish to prove (iv). So let w1, w2, w3 ∈ N(y2)− {x1, x2} and assume that

G′ := G− {y2v : v /∈ {w1, w2, w3, x1, x2}}

does not contain TK5. We may assume that
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(2) w1, w2, w3 /∈ V (X).

For, suppose not. If w1, w2, w3 ∈ V (X) then (iv) holds. So, without loss of generality, we may
assume w1 ∈ V (X)− {x1, x2} and w2 ∈ V (G−X). Since X is induced in G− x1x2 and G is
5-connected, (G−y2)− (X−w1) is 2-connected and, hence, contains independent paths P1, P2

from y1 to w1, w2, respectively. Then w1Xx1∪w1Xx2∪w1y2∪P1∪(y2w2∪P2)∪G[{x1, x2, y1, y2}]
is a TK5 in G′ with branch vertices w1, x1, x2, y1, y2, a contradiction.

(3) For any u ∈ V (x1Xx2)−{x1, x2}, {u, y1, y2} is not contained in any cycle in G′−(X−u).

For, suppose there exists u ∈ V (x1Xx2)−{x1, x2} such that {u, y1, y2} is contained in a cycle
C in G′ − (X − u). Then uXx1 ∪ uXx2 ∪ C ∪ G[{x1, x2, y1, y2}] is a TK5 in G′ with branch
vertices u, x1, x2, y1, y2, a contradiction. So we have (3).

Let y3 ∈ V (X) such that y3x2 ∈ E(X), and let H := G′ − (X − y3). Note that H
is 2-connected. By (3), no cycle in H contains {y1, y2, y3}. Thus, we apply Lemma 2.7 to
H. In order to treat simultaneously the three cases in the conclusion of Lemma 2.7, we
introduce some notation. Let Syi = {ai, bi} for i ∈ [3], such that if Lemma 2.7(i) occurs
we let a1 = a2 = a3, b1 = b2 = b3, and Syi = S for i ∈ [3]; if Lemma 2.7(ii) occurs then
a1 = a2 = a3; and if Lemma 2.7(iii) then {a1, a2, a3} and {b1, b2, b3} belong to different
components of H − V (Dy1 ∪Dy2 ∪Dy3). If Lemma 2.7(ii) or Lemma 2.7(iii) occurs then let
Ba, Bb denote the components of H−V (Dy1 ∪Dy2 ∪Dy3) such that for i ∈ [3] ai ∈ V (Ba) and
bi ∈ V (Bb). Note that Ba = Bb is possible, but only if Lemma 2.7(ii) occurs.

For convenience, let D′i := G′[Dyi + {ai, bi}] for i ∈ [3]. We choose the cuts Syi so that

(4) D′1 ∪D′2 ∪D′3 is maximal.

Since H is 2-connected, D′i, for each i ∈ [3], contains a path Yi from ai to bi and through yi. In
addition, since (G− y2)−X is 2-connected, for any v ∈ V (D′3)−{a3, b3, y3}, D′3− y3 contains
a path from a3 to b3 through v.

(5) If Ba ∩ Bb = ∅ then |V (Ba)| = 1 or Ba is 2-connected, and |V (Bb)| = 1 or Bb is
2-connected. If Ba ∩Bb 6= ∅ then Ba = Bb and Ba − a3 is 2-connected.

First, suppose Ba∩Bb = ∅. By symmetry, we only prove the claim for Ba. Suppose |V (Ba)| > 1
and Ba is not 2-connected. Then Ba has a separation (B1, B2) such that |V (B1∩B2)| ≤ 1. Since
H is 2-connected, |V (B1 ∩B2)| = 1 and, for some permutation ijk of [3], ai ∈ V (B1)− V (B2)
and aj , ak ∈ V (B2). Replacing Syi , D

′
i by V (B1∩B2)∪{bi}, D′i∪B1, respectively, while keeping

Syj , D
′
j , Syk , D

′
k unchanged, we derive a contradiction to (4).

Now assume Ba ∩Bb 6= ∅. Then Ba = Bb by definition, and a1 = a2 = a3 by our assump-
tion above. Suppose Ba − a3 is not 2-connected. Then Ba has a 2-separation (B1, B2) with
a3 ∈ V (B1 ∩ B2). First, suppose for some permutation ijk of [3], bi ∈ V (B1) − V (B2)
and bj , bk ∈ V (B2). Then replacing Syi , D

′
i by V (B1 ∩ B2), D

′
i ∪ B1, respectively, while

keeping Syj , D
′
j , Syk , D

′
k unchanged, we derive a contradiction to (4). Therefore, we may

assume {b1, b2, b3} ⊆ V (B1). Since G is 5-connected, there exists rr′ ∈ E(G) such that
r ∈ V (X)− {y3, x2} and r′ ∈ V (B2 −B1). Let R be a path B2 − (B1 − a3) from a3 to r′, and
R′ a path in B1−B2 from b1 to b2. Then (R∪r′r∪rXx1)∪ (a3Y3y3∪y3x2)∪a3Y1y1∪a3Y2y2∪
(y1Y1b1 ∪R′ ∪ b2Y2y2)∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices a3, x1, x2, y1, y2,
a contradiction.

8



(6) Dyi is connected for i ∈ [3].

Suppose Dyi is not connected for some i ∈ [3], and let D be a component of Dyi not containing
yi. Since G is 5-connected, there exists rr′ ∈ E(G) such that r ∈ V (X) − {x2, y3} and
r′ ∈ V (D).

Let R be a path in G[D + ai] from ai to r′, and R′ a path from b1 to b2 in Bb − a3.
By (5), let A1, A2, A3 be independent paths in Ba from ai to a1, a2, a3, respectively. Then
(R∪r′r∪rXx1)∪ (A1∪a1Y1y1)∪ (A2∪a2Y2y2)∪ (A3∪a3Y3y3∪y3x2)∪ (y1Y1b1∪R′∪b2Y2y2)∪
G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices ai, x1, x2, y1, y2, a contradiction.

(7) If a1 = a2 = a3 then N(a3) ∩ V (X − {x2, y3}) = ∅.

For, suppose a1 = a2 = a3 and there exists u ∈ N(a3) ∩ V (X − {x2, y3}). Let Q be a
path in Bb − a3 between b1 and b2, and let P be a path in D′3 − b3 from a3 to y3. Then
(a3u ∪ uXx1) ∪ (P ∪ y3x2) ∪ a3Y1y1 ∪ a3Y2y2 ∪ (y1Y1b1 ∪Q ∪ b2Y2y2) ∪G[{x1, x2, y1, y2}] is a
TK5 in G′ with branch vertices a3, x1, x2, y1, y2, a contradiction.

We may assume that

(8) there exists u ∈ V (X)− {x1, x2, y3} such that N(u)− {y2} 6⊆ V (X ∪D′3).

For, suppose no such vertex exists. Then G has a 5-separation (G1, G2) such that V (G1∩G2) =
{a3, b3, x1, x2, y2}, X ∪ D′3 ⊆ G1, and D′1 ∪ D′2 ∪ Ba ∪ Bb ⊆ G2. Clearly, |V (G2)| ≥ 7 since
|N(y1)| ≥ 5 and y1y2 /∈ E(G). If |V (G1)| ≥ 7 then, by Lemma 2.4, (i) or (ii) or (iii) or
(iv) holds. So we may assume |V (G1)| = 6. Then X = x1y3x2 and V (Dy3) = {y3}. Hence,
G[{x1, x2, y1, y3}] ∼= K−4 ; so (ii) holds.

(9) For all u ∈ V (X)−{x1, x2, y3} with N(u)−{y2} 6⊆ V (X ∪D′3), N(u)∩ V (D′3− y3) = ∅.

For, suppose there exist u ∈ V (X) − {x1, x2, y3}, u1 ∈ (N(u) − {y2}) − V (X ∪ D′3), and
u2 ∈ N(u) ∩ V (D′3 − y3). Recall (see before (5)) that there is a path Y ′3 in D′3 − y3 from a3 to
b3 through u2.

Suppose u1 ∈ V (Dyi) for some i ∈ [2]. Then D′i − bi (or D′i − ai) has a path Y ′i from u1 to
ai (or bi) through yi. If Y ′i ends at ai then let Pa, Pb be disjoint paths in Ba ∪Bb from a1, b3
to a2, b3−i, respectively; now Y ′i ∪ Pa ∪ Y3−i ∪ Pb ∪ b3Y

′
3u2 ∪ u2uu1 is a cycle in G′ − (X − u)

containing {u, y1, y2}, contradicting (3). So Y ′i ends at bi. Let Pb, Pa be disjoint paths in
Ba ∪ Bb from b1, a3−i to b2, a3, respectively. Then Y ′i ∪ Pb ∪ Y3−i ∪ Pa ∪ a3Y

′
3u2 ∪ u2uu1 is a

cycle in G′ − (X − u) containing {u, y1, y2}, contradicting (3).
Thus, u1 ∈ V (Ba∪Bb). By symmetry and (7), assume u1 ∈ V (Bb). Note that u1 /∈ {a3, b3}

(by the choice of u1) and Bb − a3 is 2-connected (by (5)). Hence, Bb − a3 has disjoint paths
Q1, Q2 from {u1, b3} to {b1, b2}. By symmetry between b1 and b2, we may assume Q1 is
between u1 and b1 and Q2 is between b3 and b2. Let P be a path in Ba from a1 to a2 (which is
trivial if |V (Ba)| = 1). Then Q1 ∪ u1uu2 ∪ u2Y ′3b3 ∪Q2 ∪Y2 ∪P ∪Y1 is a cycle in G′− (X − u)
containing {y1, y2, u}, contradicting (3).

(10) For any u ∈ V (X)−{x1, x2, y3} with N(u)−{y2} 6⊆ V (X ∪D′3), there exists i ∈ [2] such
that N(u)− {y2} ⊆ V (D′i) and {ai, bi} 6⊆ N(u).
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To see this, let u1, u2 ∈ (N(u)− {y2})− V (X ∪D′3) be distinct, which exist by (9) (and since
X is induced in G′ − x1x2). Suppose we may choose such u1, u2 so that {u1, u2} 6⊆ V (D′i) for
i ∈ [2].

We claim that {u1, u2} 6⊆ V (Ba) and {u1, u2} 6⊆ V (Bb). Recall that if Ba ∩ Bb 6= ∅ then
Ba = Bb and if Ba ∩Bb = ∅ then there is symmetry between Ba and Bb. So if the claim fails
we may assume that u1, u2 ∈ V (Bb). Then by (5), Bb− a3 is 2-connected; so Bb− a3 contains
disjoint paths Q1, Q2 from {u1, u2} to {b1, b2}. If Ba = Bb, let P = a3. If Ba∩Bb = ∅, then let
P be a path in Ba from a1 to a2. Now Q1 ∪u1uu2 ∪Q2 ∪Y1 ∪P ∪Y2 is a cycle in G′− (X −u)
containing {u, y1, y2}, contradicting (3).

Next, we show that {ai, bi} 6⊆ N(u) for i ∈ [2]. For, suppose u1 = ai and u2 = bi for some
i ∈ [2]. Then, since {u1, u2} ∩ {a3, b3} = ∅, |V (Ba)| ≥ 2 and |V (Bb)| ≥ 2. By (5), let P1, P2

be independent paths in Ba from ai to a3−i, a3, respectively, and Q1, Q2 be independent paths
in Bb from bi to b3−i, b3, respectively. Now uai ∪ ubi ∪ aiYiyi ∪ biYiyi ∪ (yix1 ∪ x1Xu) ∪ (P1 ∪
Y3−i ∪Q1)∪ (P2 ∪ a3Y3y3)∪ (Q2 ∪ b3Y3y3)∪uXy3 ∪ yix2y3 is a TK5 in G′ with branch vertices
ai, bi, u, yi, y3, a contradiction.

Suppose u1 ∈ V (Ba − a3) and u2 ∈ V (Bb − b3). Then |V (Ba)| ≥ 2 and |V (Bb)| ≥ 2. Let
Y ′3 be a path in D′3 − y3 from a3 to b3. First, assume that u1 ∈ {a1, a2} or u2 ∈ {b1, b2}.
By symmetry, we may assume u1 = a1. So u2 6= b1. By (5), Ba − a1 contains a path P
from a2 to a3, and Bb contains disjoint paths Q1, Q2 from {b2, b3} to b1, u2, respectively. Then
Y1∪Q1∪Y2∪P∪Y ′3∪Q2∪u1uu2 is a cycle in G′−(X−u) containing {u, y1, y2}, contradicting (3).
So u1 /∈ {a1, a2} and u2 /∈ {b1, b2}. Then by (5) and symmetry, we may assume that Ba contains
disjoint paths P1, P2 from u1, a3 to a1, a2, respectively. By (5) again, Bb contains disjoint paths
Q1, Q2 from b1, u2, respectively to {b2, b3}. Now P1 ∪ Y1 ∪Q1 ∪ Y2 ∪ P2 ∪ Y ′3 ∪Q2 ∪ u2uu1 is a
cycle in G′ − (X − u) containing {u, y1, y2}, contradicting (3).

Therefore, we may assume u1 ∈ V (Dyi) for some i ∈ [2]. By symmetry, we may assume
that u1 ∈ V (Dy1) and D′1 − a1 contains a path R1 from u1 to b1 and through y1. Then
u2 /∈ V (D′1) as we assumed {u1, u2} 6⊆ V (D′1).

Suppose u2 ∈ V (Dy2). If D′2 − a2 contains a path R2 from u2 to b2 through y2 then let Q
be a path in Bb from b1 to b2; now R1 ∪Q ∪R2 ∪ u2uu1 is a cycle in G′ − (X − u) containing
{u, y1, y2}, contradicting (3). So D′2 − b2 contains a path R2 from u2 to a2 and through y2.
Now let P be a path in Ba from a2 to a3, Q be a path in Bb − a3 from b1 to b3. Let Y ′3 be a
path in D′3 − y3 from a3 to b3. Then R1 ∪Q ∪ Y ′3 ∪ P ∪R2 ∪ u2uu1 is a cycle in G′ − (X − u)
containing {u, y1, y2}, contradicting (3).

Finally, assume u2 ∈ V (Ba ∪Bb). If u2 ∈ V (Bb) then, by (5), let Q1, Q2 be disjoint paths
in Bb − a3 from b1, u2, respectively, to {b2, b3}, and let P be a path in Ba from a2 to a3; now
u2uu1∪R1∪Q1∪Q2∪Y2∪P ∪Y ′3 is a cycle in G′−(X−u) containing {u, y1, y2}, contradicting
(3). So u2 /∈ V (Bb) and u2 ∈ V (Ba − a1); hence Ba ∩ Bb = ∅. Let P be a path in Ba from
u2 to a2 and Q be a path in Bb from b1 to b2. Then u2uu1 ∪ R1 ∪ Q ∪ Y2 ∪ P is a cycle in
G′ − (X − u) containing {u, y1, y2}, contradicting (3). This completes the proof of (10).

By (10) and by symmetry, let u ∈ V (X) − {x1, x2, y3} and u1, u2 ∈ N(u) such that
u1 ∈ V (Dy1) and u2 ∈ V (D′1). If G[D′1 + u] contains independent paths R1, R2 from u to
a1, b1, respectively, such that y1 ∈ V (R1 ∪ R2), then let P be a path in Ba between a1 and
a2 and Q be a path in Bb − a3 between b1 and b2; now R1 ∪ P ∪ Y2 ∪ Q ∪ R2 is a cycle in
G′ − (X − u) containing {u, y1, y2}, contradicting (3). So such paths do not exist. Then in
the 2-connected graph D∗1 := G[D′1 + u] + {c, ca1, cb1} (by adding a new vertex c), there is no
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cycle containing {c, u, y1}. Hence, by Lemma 2.7, D∗1 has a 2-cut T separating y1 from {u, c},
and T ∩ {u, c} = ∅.

We choose u, u1, u2 and T so that the T -bridge of D∗1 containing y1, denoted B, is minimal.
Then B − T contains no neighbor of X −{x1, x2}. Hence, G has a 5-separation (G1, G2) such
that V (G1 ∩G2) = {x1, x2, y2}∪V (T ), B ⊆ G1, and X ∪D′2 ∪D′3 ⊆ G2. Clearly, |V (G2)| ≥ 7.
Since y1y2 /∈ E(G) and G is 5-connected, |V (G1)| ≥ 7. So (i) or (ii) or (iii) or (iv) holds by
Lemma 2.4.

4 An intermediate substructure

By Lemma 3.2, to prove Theorem 1.1 it suffices to deal with the second part of (iv) of
Lemma 3.2. Thus, let G be a 5-connected nonplanar graph and x1, x2, y1, y2 ∈ V (G) be dis-
tinct such that G[{x1, x2, y1, y2}] ∼= K−4 with y1y2 /∈ E(G), let w1, w2, w3 ∈ N(y2) − {x1, x2}
be distinct, and let P be an induced path in G− x1x2 from x1 to x2 such that y1, y2 /∈ V (P ),
w1, w2, w3 ∈ V (P ), and (G− y2)− P is 2-connected.

Without loss of generality, assume x1, w1, w2, w3, x2 occur on P in order. Let

X := x1Pw1 ∪ w1y2w3 ∪ w3Px2,

and let
G′ := G− {y2v : v /∈ {w1, w2, w3, x1, x2}}.

Then X is an induced path in G′ − x1x2, y1 /∈ V (X), and G′ − X is 2-connected. For
convenience, we record this situation by calling (G,X, x1, x2, y1, y2, w1, w2, w3) a 9-tuple.

In this section, we obtain a substructure of G′ in terms of X and seven additional paths
A,B,C, P,Q, Y, Z in G′. See Figure 1, where X is the path in boldface and Y,Z are not
shown. First, we find two special paths Y,Z in G′ with Lemma 4.1 below. We will then use
Lemma 4.2 to find the paths A,B,C, and use Lemma 4.3 to find the paths P and Q. In the
next section, we will use this substructure to find the desired TK5 in G or G′.

Lemma 4.1 Let (G,X, x1, x2, y1, y2, w1, w2, w3) be a 9-tuple. Then one of the following holds:

(i) G contains TK5 in which y2 is not a branch vertex, or G′ contains TK5.

(ii) G− y2 contains K−4 .

(iii) G has a 5-separation (G1, G2) such that V (G1∩G2) = {y2, a1, a2, a3, a4}, G2 is the graph
obtained from the edge-disjoint union of the 8-cycle a1b1a2b2a3b3a4b4a1 and the 4-cycle
b1b2b3b4b1 by adding y2 and the edges y2bi for i ∈ [4].

(iv) There exist z1 ∈ V (x1Xy2) − {x1, y2}, z2 ∈ V (x2Xy2) − {x2, y2} such that H := G′ −
(V (X − {y2, z1, z2}) ∪ E(X)) has disjoint paths Y,Z from y1, z1 to y2, z2, respectively.

Proof. Let K be the graph obtained from G − {x1, x2, y2} by contracting xiXy2 − {xi, y2}
to the new vertex ui, for i ∈ [2]. Note that K is 2-connected; since G is 5-connected, X is
induced in G′ − x1x2, and G−X is 2-connected. We may assume that
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(1) there exists a collectionA of subsets of V (K)−{u1, u2, w2, y1} such that (K,A, u1, y1, u2, w2)
is 3-planar.

For, suppose this is not the case. Then by Lemma 2.1, K contains disjoint paths, say Y, U ,
from y1, u1 to w2, u2, respectively. Let vi denote the neighbor of ui in the path U , and let
zi ∈ V (xiXy2)−{xi, y2} be a neighbor of vi in G. Then Z := (U−{u1, u2})+{z1, z2, z1v1, z2v2}
is a path between z1 and z2. Now Y + {y2, y2w2}, Z are the desired paths for (iv). So we may
assume (1).

Since G − X is 2-connected, |NK(A) ∩ {u1, u2, w2}| ≤ 1 for all A ∈ A. Let p(K,A) be
the graph obtained from K by (for each A ∈ A) deleting A and adding new edges joining
every pair of distinct vertices in NK(A). Since G is 5-connected and G−X is 2-connected, we
may assume that p(K,A) − {u1, u2} is a 2-connected plane graph, and for each A ∈ A with
NK(A) ∩ {u1, u2} 6= ∅ the edge joining vertices of NK(A)− {u1, u2} occur on the outer cycle
D of p(K,A)− {u1, u2}. Note that y1, w2 ∈ V (D).

Let t1 ∈ V (D) with t1Dy1 minimal such that u1t1 ∈ E(p(K,A)); and let t2 ∈ V (D) with
y1Dt2 minimal such that u2t2 ∈ E(p(K,A)). (So t1, y1, t2, w2 occur on D in clockwise order.)
Since K is 2-connected and X is induced in G′−x1x2, there exist z1 ∈ V (x1Xy2)−{x1, y2} and
independent paths R1, R

′
1 in G from z1 to D and internally disjoint from V (p(K,A))∪ V (X),

such that R1 ends at t1 and R′1 ends at some vertex t′1 6= t1, and w2, t
′
1, t1, y1 occur on D in

clockwise order. Similarly, there exist z2 ∈ V (x2Xy2)−{x2, y2} and independent paths R2, R
′
2

in G from z2 to D and internally disjoint from V (p(K,A)) ∪ V (X), such that R2 ends at t2,
R′2 ends at some vertex t′2 6= t2, and y1, t2, t

′
2, w2 occur on D in clockwise order.

We may assume that

(2) K−{u1, u2} has no 2-separation (K ′,K ′′) such that V (K ′∩K ′′) ⊆ V (t1Dt2), |V (K ′)| ≥ 3,
and V (t2Dt1) ⊆ V (K ′′).

For, suppose such a separation (K ′,K ′′) does exist in K − {u1, u2}. Then by the definition of
u1, u2, we see that G has a separation (G1, G2) such that V (G1∩G2) = V (K ′∩K ′′)∪{x1, x2, y2},
K ′ ⊆ V (G1) and K ′′ ∪X ⊆ G2. Note that G[{x1, x2, y2}] is a triangle in G, |V (G2)| ≥ 7, and
|V (G1)| ≥ 6 (as |V (K ′)| ≥ 3). If |V (G1)| ≥ 7 then by Lemma 2.4, (i) or (ii) or (iii) holds.
(Note that if (iv) of Lemma 2.4 holds then G′ has a TK5; so (i) holds.) So assume |V (G1)| = 6,
and let v ∈ V (G1−G2). Since G is 5-connected, N(v) = V (G1 ∩G2). In particular, v 6= y1 as
y1y2 /∈ E(G). Then G[{v, x1, x2, y1}] contains K−4 , and (ii) holds. So we may assume (2).

Next we may assume that

(3) each neighbor of x1 is contained in V (X), or V (t1Dy1), or some A ∈ A with u1 ∈
NK(A), and each neighbor of x2 is contained V (X), or V (y1Dt2), or some A ∈ A with
u2 ∈ NK(A).

For, otherwise, we may assume by symmetry that there exists a ∈ N(x1) − V (X) such that
a /∈ V (t1Dy1) and a /∈ A for A ∈ A with u1 ∈ NK(A). Let a′ = a and S = a if a /∈ A for all
A ∈ A. When a ∈ A for some A ∈ A then by (2), there exists a′ ∈ NK(A) − V (t1Dt2) and
let S be a path in G[A + a′] from a to a′. By (2) again, there is a path T from a′ to some
u ∈ V (t2Dt1)−{t1, t2} in p(K,A)−{u1, u2, y2}−t1Dt2. Then t1Dt2∪R1∪R2 and R′2∪t′2Du∪T
give independent paths T1, T2, T3 in G−(X−{z1, z2}) with T1, T2 from y1 to z1, z2, respectively,
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and T3 from a′ to z2. Hence, z2Xx2∪z2Xy2∪T2∪(T3∪S∪ax1)∪(T1∪z1Xy2)∪G[{x1, x2, y1, y2}]
is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2; so (i) holds.

Label the vertices of w2Dy1 and x1Xy2 such that w2Dy1 = v1 . . . vk and x1Xy2 = vk+1 . . . vn,
with v1 = w2, vk = y1, vk+1 = x1 and vn = y2. Let G1 denote the union of x1Xy2,
{v1, . . . , vk}, G[A∪ (NK(A)− u1)] for A ∈ A with u1 ∈ NK(A), all edges of G′ from x1Xy2 to
{v1, . . . , vk}, and all edges of G′ from x1Xy2 to A for A ∈ A with u1 ∈ NK(A). Note that G1

is (4, {v1, . . . , vn})-connected. Similarly, let y1Dw2 = z1 . . . zl and x2Xy2 = zl+1 . . . zm, with
z1 = w2, zl = y1, zl+1 = x2 and zm = y2. Let G2 denote the union of y2Xx2, {z1, . . . , zl},
G[A∪(NK(A)−u2)] for A ∈ A with u2 ∈ NK(A), all edges of G′ from y2Xx2 to {z1, . . . , zl}, and
all edges of G′ from y2Xx2 to A for A ∈ A with u2 ∈ NK(A). Note that G2 is (4, {z1, . . . , zm})-
connected.

If both (G1, v1, . . . , vn) and (G2, z1, . . . , zm) are planar then G− y2 is planar; so (i) or (ii)
or (iii) holds by Lemma 2.5. Hence, we may assume by symmetry that (G1, v1, . . . , vn) is not
planar. Then by Lemma 2.2, there exist 1 ≤ q < r < s < t ≤ n such that G1 has disjoint
paths Q1, Q2 from vq, vr to vs, vt, respectively, and internally disjoint from {v1, . . . , vn}.

Since (K,u1, y1, u2, w2) is 3-planar, it follows from the definition of G1 that q, r ≤ k and
s, t ≥ k+1. Note that the paths y1Dt2, t

′
2Dvq, vrDy1 give rise to independent paths P1, P2, P3

in K − {u1, u2}, with P1 from y1 to t2, P2 from t′2 to vq, and P3 from vr to y1. Therefore,
z2Xx2 ∪ z2Xy2 ∪ (R2 ∪ P1) ∪ (R′2 ∪ P2 ∪Q1 ∪ vsXx1) ∪ (P3 ∪Q2 ∪ vtXy2) ∪G[{x1, x2, y1, y2}]
is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2. So (i) holds.

Conclusion (iv) of Lemma 4.1 motivates the concept of 11-tuple. We say that (G,X, x1, x2,
y1, y2, w1, w2, w3, z1, z2) is an 11-tuple if

• (G,X, x1, x2, y1, y2, w1, w2, w3) is a 9-tuple, and zi ∈ V (xiXy2)− {xi, y2} for i ∈ [2],

• H := G′− (V (X −{y2, z1, z2})∪E(X)) contains disjoint paths Y,Z from y1, z1 to y2, z2,
respectively, and

• subject to the above conditions, z1Xz2 is maximal.

Since G is 5-connected and X is induced in G′ − x1x2, each zi (i ∈ [2]) has at least two
neighbors in H − {y2, z1, z2} (which is 2-connected). Note that y2 has exactly one neighbor
H − {y2, z1, z2}, namely, w2. So H − y2 is 2-connected.

Lemma 4.2 Let (G,X, x1, x2, y1, y2, w1, w2, w3, z1, z2) be an 11-tuple and Y, Z be disjoint paths
in H := G′− (V (X −{y2, z1, z2})∪E(X)) from y1, z1 to y2, z2, respectively. Then G contains
a TK5 in which y2 is not a branch vertex, or G′ contains TK5, or

(i) for i ∈ [2], H has no path through zi, z3−i, y1, y2 in order (so y1zi /∈ E(G)), and

(ii) there exists i ∈ [2] such that H contains independent paths A,B,C, with A and C from
zi to y1, and B from y2 to z3−i.

Proof. First, suppose, for some i ∈ [2], there is a path P in H from zi to y2 such that
zi, z3−i, y1, y2 occur on P in order. Then z3−iXx3−i∪ z3−iXy2∪ (z3−iPzi∪ ziXxi)∪ z3−iPy1∪
y1Py2 ∪G[{x1, x2, y1, y2}] is a TK5 with branch vertices x1, x2, y1, y2, z3−i. So we may assume
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that such P does not exist. Hence by the existence of Y, Z in H, we have y1z1, y1z2 /∈ E(G),
and (i) holds.

So from now on we may assume that (i) holds. For each i ∈ [2], let Hi denote the graph
obtained from H by duplicating zi and y1, and let z′i and y′1 denote the duplicates of zi and
y1, respectively. So in Hi, y1 and y′1 are not adjacent, and have the same set of neighbors,
namely NH(y1); and the same holds for zi and z′i.

First, suppose for some i ∈ [2], Hi contains pairwise disjoint paths A′, B′, C ′ from {zi, z′i, y2}
to {y1, y′1, z3−i}, with zi ∈ V (A′), z′i ∈ V (C ′) and y2 ∈ V (B′). If z3−i /∈ V (B′), then after
identifying y1 with y′1 and zi with z′i, we obtain from A′ ∪ B′ ∪ C ′ a path in H from z3−i to
y2 through zi, y1 in order, contradicting our assumption that (i) holds. Hence z3−i ∈ V (B′).
Then we get the desired paths for (ii) from A′ ∪B′ ∪C ′ by identifying y1 with y′1 and zi with
z′i.

So we may assume that for each i ∈ [2], Hi does not contain three pairwise disjoint paths
from {y2, zi, z′i} to {y1, y′1, z3−i}. Then Hi has a separation (H ′i, H

′′
i ) such that |V (H ′i∩H ′′i )| = 2,

{y2, zi, z′i} ⊆ V (H ′i) and {y1, y′1, z3−i} ⊆ V (H ′′i ).
We claim that y1, y2, y

′
1, z
′
i, z1, z2 /∈ V (H ′i∩H ′′i ) for i ∈ [2]. Note that {y1, y′1} 6= V (H ′i∩H ′′i ),

since otherwise y1 would be a cut vertex in H separating z3−i from {y2, zi}. Now suppose one
of y1, y

′
1 is in V (H ′i∩H ′′i ); then since y1, y

′
1 are duplicates, the vertex in V (H ′i∩H ′′i )−{y1, y′1} is

a cut vertex in H separating {y1, z3−i} from {y2, zi}, a contradiction. So y1, y
′
1 /∈ V (H ′i ∩H ′′i ).

Similar argument shows that zi, z
′
i /∈ V (H ′i∩H ′′i ). Since H−y2 is 2-connected, y2 /∈ V (H ′i∩H ′′i ).

Since H − {z3−i, y2} is 2-connected, z3−i /∈ V (H ′i ∩H ′′i ).
For i ∈ [2], let V (H ′i ∩ H ′′i ) = {si, ti}, and let F ′i (respectively, F ′′i ) be obtained from

H ′i (respectively, H ′′i ) by identifying z′i with zi (respectively, y′1 with y1). Then (F ′i , F
′′
i ) is a

2-separation in H such that V (F ′i ∩F ′′i ) = {si, ti}, {y2, zi} ⊆ V (F ′i )−{si, ti}, and {y1, z3−i} ⊆
V (F ′′i ) − {si, ti}. Let Z1, Y2 denote the {s1, t1}-bridges of F ′1 containing z1, y2, respectively;
and let Z2, Y1 denote the {s1, t1}-bridges of F ′′1 containing z2, y1, respectively.

We may assume Y1 = Z2 or Y2 = Z1. For, suppose Y1 6= Z2 and Y2 6= Z1. Since H − y2 is
2-connected, there exist independent P1, Q1 in Z1 from z1 to s1, t1, respectively, independent
paths P2, Q2 in Z2 from z2 to s1, t1, respectively, independent paths P3, Q3 in Y1 from y1 to
s1, t1, respectively, and a path S in Y2 from y2 to one of {s1, t1} and avoiding the other, say
avoiding t1. Then z1Xx1 ∪ z1Xy2 ∪ y2x1 ∪ P1 ∪ S ∪ (P3 ∪ y1x1) ∪ (Q2 ∪ Q1) ∪ P2 ∪ z2Xy2 ∪
(z2Xx2 ∪ x2x1) is a TK5 in G′ with branch vertices s1, x1, y2, z1, z2.

Indeed, Y1 = Z2. For, if Y1 6= Z2 then Y2 = Z1, Y2 − {s1, t1} has a path from y2 to z1, and
Y1 ∪ Z2 has two independent paths from y1 to z2 (since H − y2 is 2-connected). Now these
three paths contradict the existence of the cut {s2, t2} in H.

Then {s2, t2} ∩ V (Y1 − {s1, t1}) 6= ∅. Without loss of generality, we may assume that t2 ∈
V (Y1)−{s1, t1}. Suppose Y2 = Z1. Then s2 ∈ V (Y2)−{s1, t1} and we may assume that in H,
{s2, t2} separates {s1, y1, z1} from {t1, y2, z2}. Hence, in Y1, t2 separates {y1, s1} from {z2, t1},
and in Y2, s2 separates {z1, s1} from {y2, t1}. But this contradicts the existence of the paths
Y and Z in H. So Y2 6= Z1. Since H − y2 is 2-connected and NG′(y2) = {w1, w2, w3, x1, x2},
we must have s2 = w2 ∈ {s1, t1}. By symmetry, we may assume that s2 = w2 = s1.

Let Y ′1 , Z
′
2 be the {s2, t2}-bridge of Y1 containing y1, z2, respectively. Then t1 /∈ V (Z ′2); for,

otherwise, H−{s2, t2} would contain a path from z2 to z1, a contradiction. Therefore, because
of the paths Y and Z, t1 ∈ V (Y ′1) and Y ′1 contains disjoint paths R1, R2 from s2 = s1, t1 to y1, t2,
respectively. Since H − y2 is 2-connected, Z1 has independent P1, Q1 from z1 to s2 = s1, t1,
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respectively, and Z ′2 has independent paths P2, Q2 from z2 to s2 = s1, t2, respectively. Now
z1Xx1 ∪ z1Xy2 ∪ y2x1 ∪P1 ∪ s1y2 ∪ (R1 ∪ y1x1)∪P2 ∪ (Q2 ∪R2 ∪Q1)∪ z2Xy2 ∪ (z2Xx2 ∪x2x1)
is a TK5 in G′ with branch vertices s1, x1, y2, z1, z2.

Lemma 4.3 Let (G,X, x1, x2, y1, y2, w1, w2, w3, z1, z2) be an 11-tuple and Y,Z be disjoint paths
in H := G′ − V (X − {y2, z1, z2} ∪ E(X)) from y1, z1 to y2, z2, respectively. Then G contains
a TK5 in which y2 is not a branch vertex or G′ contains TK5, or

(i) there exist i ∈ [2] and independent paths A,B,C in H, with A and C from zi to y1, and
B from y2 to z3−i,

(ii) for each i ∈ [2] satisfying (i), z3−ix3−i ∈ E(X), and

(iii) H contains two disjoint paths from V (B − y2) to V (A ∪ C) − {y1, zi} and internally
disjoint from A ∪B ∪ C, with one ending in A and the other ending in C.

Proof. By Lemma 4.2, we may assume that

(1) for each i ∈ [2], H has no path through zi, z3−i, y1, y2 in order (so y1zi /∈ E(G)), and

(2) there exist i ∈ [2] and independent paths A,B,C in H, with A and C from zi to y1, and
B from y2 to z3−i.

Let J(A,C) denote the (A ∪ C)-bridge of H containing B, and L(A,C) denote the union
of (A∪C)-bridges of H each of which intersects both A−{y1, zi} and C−{y1, zi}. We choose
A,B,C such that the following are satisfied in the order listed:

(a) A,B,C are induced paths in H,

(b) whenever possible, J(A,C) ⊆ L(A,C),

(c) J(A,C) is maximal, and

(d) L(A,C) is maximal.

We now show that (ii) and (iii) hold even with the restrictions (a), (b), (c) and (d) above.
Let B′ denote the union of B and the B-bridges of H not containing A ∪ C.

(3) If (iii) holds then (ii) holds.

Suppose (iii) holds. Let V (P∩B) = {p}, V (Q∩B) = {q}, V (P∩C) = {c} and V (Q∩A) = {a}.
By the symmetry between A and C, we may assume that y2, p, q, z3−i occur on B in order.
We may further choose P,Q so that pBz3−i is maximal.

To prove (ii), suppose there exists x ∈ V (z3−iXx3−i)−{x3−i, z3−i}. If N(x)∩V (H)−{y1} 6⊆
V (B′) then G′ has a path T from x to (A− y1) ∪ (C − y1) ∪ (P − p) ∪ (Q− a) and internally
disjoint from A ∪ B′ ∪ C ∪ P ∪ Q; so A ∪ B ∪ C ∪ P ∪ Q ∪ T contain disjoint paths from
y1, zi to y2, x, respectively, contradicting the choice of Y and Z in the 11-tuple (that z1Xz2 is
maximal). So N(x) ∩ V (H)− {y1} ⊆ V (B′). Consider B′′ := G[(B′ − z3−i) + x].
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If B′′ contains disjoint paths P ′, Q′ from y2, x to p, q, respectively, then Q′ ∪Q∪ aAzi and
P ′ ∪P ∪ cCy1 contradict the choice of Y, Z. If B′′ contains disjoint paths P ′′, Q′′ from x, y2 to
p, q, respectively, then Q′′ ∪Q ∪ aAy1 and P ′′ ∪ P ∪ cCzi contradict the choice of Y,Z.

So we may assume that there is a cut vertex z in B′′ separating {x, y2} from {p, q}. Note
that z ∈ V (y2Bp).

Since x has at least two neighbors in B′′ − y2 (because G is 5-connected and X is induced
in G′−x1x2), the z-bridge of B′′ containing {x, y2} has at least three vertices. Therefore, from
the maximality of pBz3−i and 2-connectedness of H − {y2, z1, z2}, there is a path in H from
y1 to y2Bz − {y2, z} and internally disjoint from P ∪Q∪A∪C ∪B′. So there is a path Y ′ in
H from y1 to y2 and disjoint from P ∪Q ∪A ∪ C ∪ pBz3−i. Now z3−iBp ∪ P ∪ cCzi ∪A ∪ Y ′

is a path in H through z3−i, zi, y1, y2 in order, contradicting (1).

By (2) and (3), it suffices to prove (iii). Since H − {y2, zi} is 2-connected, it contains
disjoint paths P,Q from B − y2 to some distinct vertices s, t ∈ V (A ∪ C)− {zi}, respectively,
and internally disjoint from A ∪B ∪ C.

(4) We may choose P,Q so that s 6= y1 and t 6= y1.

For, otherwise, H − {y2, zi} has a separation (H1, H2) such that V (H1 ∩ H2) = {v, y1} for
some v ∈ V (H), (A ∪ C) − zi ⊆ H1 and B − y2 ⊆ H2. Recall the disjoint paths Y,Z in H
from z1, y1 to z2, y2, respectively. Suppose v /∈ V (Z). Then Z − zi ⊆ H2 − {y1, v}. Hence we
may choose Y (by modifying Y ∩ H1) so that V (Y ∩ A) = {y1} or V (Y ∩ C) = {y1}. Now
Z ∪ A ∪ Y or Z ∪ C ∪ Y is a path in H from z3−i to y2 through zi, y1 in order, contradicting
(1). So v ∈ V (Z). Hence Y ⊆ H2 − v, and we may choose Z (by modifying Z ∩H1) so that
V (Z ∩A) = {zi} or V (Z ∩ C) = {zi}. Now Z ∪A ∪ Y or Z ∪ C ∪ Y is a path in H from z3−i
to y2 through zi, y1 in order, contradicting (1) and completing the proof of (4).

If s ∈ V (A− y1) and t ∈ V (C − y1) or s ∈ V (C − y1) and t ∈ V (A− y1), then P,Q are the
desired paths for (iii). So we may assume by symmetry that s, t ∈ V (C). Let V (P ∩B) = {p}
and V (Q ∩ B) = {q} such that y2, p, q, z3−i occur on B in this order. By (1) zi, s, t, y1 must
occur on C in order. We choose P,Q so that

(∗) sCt is maximal, then pBz3−i is maximal, and then qBz3−i is minimal.

Now consider B′, the union of B and the B-bridges of H not containing A∪C. Note that
(P − p) ∪ (Q − q) is disjoint from B′, and every path in H from A ∪ C to B′ and internally
disjoint from A ∪B′ ∪ C must end in B. For convenience, let K = P ∪Q ∪A ∪B′ ∪ C.

(5) B′ − y2 contains independent paths P ′, Q′ from z3−i to p, q, respectively.

Otherwise, B′−y2 has a cut vertex z separating z3−i from {p, q}. Clearly, z ∈ V (qBz3−i−z3−i),
and we choose z so that zBz3−i is minimal.

Let B′′ denote the z-bridge of B′−y2 containing z3−i; then zBz3−i ⊆ B′′. Since H−{y2, zi}
is 2-connected, it contains a path W from some w′ ∈ V (B′′ − z) to some w ∈ V (P ∪Q ∪ A ∪
C) − {zi} and internally disjoint from K. By the definition of B′, w′ ∈ V (ziBz3−i). By (1),
w /∈ V (P ) ∪ V (ziCt− t). By (∗), w /∈ V (Q) ∪ V (tCy1 − y1).

If w ∈ V (A) − {zi, y1} then P,W give the desired paths for (iii). So we may assume
w = y1 for any choice of W ; hence, z ∈ V (Z) and Y ∩ (B′′ ∪ (W − y1)) = ∅. By the
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minimality of zBz3−i, B
′′ has independent paths P ′′, Q′′ from z3−i to z, w′, respectively. Note

that ziZz ∩ (B′′ − z) = ∅. Now ziZz ∪ P ′′ ∪Q′′ ∪W ∪ Y is a path in H through zi, z3−i, y1, y2
in order, contradicting (1).

(6) We may assume that J(A,C) 6⊆ L(A,C).

For, otherwise, there is a path R from B to some r ∈ V (A) − {y1, zi} and internally disjoint
from A ∪ B′ ∪ C. If R ∩ (P ∪ Q) 6= ∅, then it is easy to check that P ∪ Q ∪ R contains the
desired paths for (iii). So we may assume R ∩ (P ∪ Q) = ∅. If y2 /∈ V (R), then P,R are
the desired paths for (iii). So assume y2 ∈ V (R). Recall the paths P ′, Q′ from (5). Then
ziCs ∪ P ∪ P ′ ∪ Q′ ∪ Q ∪ tCy1 ∪ y1Ar ∪ R is a path in H through zi, z3−i, y1, y2 in order,
contradicting (1) and completing the proof of (6).

Let J = J(A,C)∪C. Then by (1), J does not contain disjoint paths from y2, zi to y1, z3−i,
respectively. So by Lemma 2.1, there exists a collection A of subsets of V (J)− {y1, y2, z1, z2}
such that (J,A, zi, y1, z3−i, y2) is 3-planar. We choose A so that every member of A is minimal
and, subject to this, |A| is minimum. Then

(7) for any D ∈ A and any v ∈ V (D), (J [D + NJ(D)], NJ(D) ∪ {v}) is not 3-planar.

Suppose for some D ∈ A and some v ∈ D, there is a collection of subsets A′ of D − {v}
such that (J [D + NJ(D)],A′, NJ(D) ∪ {v}) is 3-planar. Then, with A′′ = (A − {D}) ∪ A′,
(J,A′′, zi, y1, z3−i, y2) is 3-planar. So A′′ contradicts the choice of A. Hence, we have (7).

Let v1, . . . , vk be the vertices of L(A,C) ∩ (C − {y1, zi}) such that zi, v1, . . . , vk, y1 occur
on C in the order listed. We claim that

(8) (J, zi, v1, . . . , vk, y1, z3−i, y2) is 3-planar.

For, suppose otherwise. Since there is only one C-bridge in J and (J,A, zi, y1, z3−i, y2) is
3-planar, there exist j ∈ [k] and D ∈ A such that vj ∈ D. Since H is 2-connected, let
c1, c2 ∈ V (C) ∩NJ(D) with c1Cc2 maximal.

Suppose NJ(D) ⊆ V (C). Then, since there is only one C-bridge in J and (J,A, zi, y1, z3−i, y2)
is 3-planar, J has a separation (J1, J2) such that V (J1∩J2) = {c1, c2}, D∪V (c1Cc2) ⊆ V (J1),
and B ⊆ J2. Since J has only one C-bridge and C is induced in H, we have J1 = c1Cc2.
Now let A′ be obtained from A by removing all members of A contained in V (J1). Then
(J,A′, zi, y1, z3−i, y2) is 3-planar, contradicting the choice of A.

Thus, let c ∈ NJ(D) − V (C). So c ∈ V (J(A,C)). Let D′ = J [D + {c1, c2, c}]. By (7)
and Lemma 2.1, D′ contains disjoint paths R from vj to c and T from c1 to c2. We may
assume T is induced. Let C ′ be obtained from C by replacing c1Cc2 with T . We now see that
A,B,C ′ satisfy (a), but J(A,C ′) intersects both A− {y1, zi} (by definition of vj and because
c ∈ V (J(A,C)) − V (C)) and C ′ − {y1, zi} (because of P,Q), contradicting (b) (via (6)) and
completing the proof of (8).

(9) There exist disjoint paths R1, R2 in L(A,C) from some r1, r2 ∈ V (C) to some r′1, r
′
2 ∈

V (A), respectively, and internally disjoint from A∪C, such that zi, r1, r2, y1 occur on C
in this order and zi, r

′
2, r
′
1, y1 occur on A in this order.
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We prove (9) by studying the (A∪C)-bridges of H other than J(A,C). For any (A∪C)-bridge
T of H with T 6= J(A,C), if T intersects A let a1(T ), a2(T ) ∈ V (T ∩ A) with a1(T )Aa2(T )
maximal, and if T intersects C let c1(T ), c2(T ) ∈ V (T ∩ C) with c1(T )Cc2(T ) maximal. We
choose the notation so that zi, a1(T ), a2(T ), y1 occur on A in order, and zi, c1(T ), c2(T ), y1
occur on C in order.

If T1, T2 are (A∪C)-bridges of H such that T2 ⊆ L(A,C), T1 6= J(A,C), and T1 intersects
C (or A) only, then c1(T1)Cc2(T1) − {c1(T1), c2(T1)} (or a1(T1)Aa2(T1) − {a1(T1), a2(T1)})
does not intersect T2. For, otherwise, we may modify C (or A) by replacing c1(T1)Cc2(T1) (or
a1(T1)Aa2(T1)) with an induced path in T1 from c1(T1) to c2(T1) (or from a1(T1) to a2(T1)).
The new A and C do not affect (a), (b) and (c) but enlarge L(A,C), contradicting (d).

Because of the disjoint paths Y and Z in H, (H, zi, y1, z3−i, y2) is not 3-planar. By (1)
A − {y1, zi} 6= ∅. Hence, since H − {y2, z1, z2} is 2-connected, L(A,C) 6= ∅. Thus, since
(J, zi, v1, . . . , vk, y1, z3−i, y2) is 3-planar (by (8)) and J(A,C) does not intersect A − {y1, zi}
(by (6)), one of the following holds: There exist (A∪C)-bridges T1, T2 of H such that T1∪T2 ⊆
L(A,C), ziAa2(T1) properly contains ziAa1(T2), and c1(T1)Cy1 properly contains c2(T2)Cy1;
or there exists an (A ∪ C)-bridge T of H such that T ⊆ L(A,C) and T ∪ a1(T )Aa2(T ) ∪
c1(T )Cc2(T ) has disjoint paths from a1(T ), a2(T ) to c2(T ), c1(T ), respectively. In either case,
we have (9).

(10) r1, r2 ∈ V (tCy1) for all choices of R1, R2 in (9), or r1, r2 ∈ V (ziCs) for all choices of
R1, R2 in (9).

For, suppose there exist R1, R2 such that r1 ∈ V (ziCs) and r2 ∈ V (tCy1), or r1 ∈ V (sCt) −
{s, t}, or r2 ∈ V (sCt)−{s, t}. Let A′ := ziAr

′
2∪R2∪r2Cy1 and C ′ := ziCr1∪R1∪r′1Ay1. We

may assume A′, C ′ are induced paths in H (by taking induced paths in H[A′] and H[C ′]). Note
that A′, B,C ′ satisfy (a), and J(A,C) ⊆ J(A′, C ′). However, because of P and Q, J(A′, C ′)
intersects both A′ − {zi, y1} and C ′ − {zi, y1}, contradicting (b) (via (6)) and completing the
proof of (10).

If r1, r2 ∈ V (ziCs) for all choices of R1, R2 in (9) then we choose such R1, R2 that ziAr′1
and ziCr2 are maximal, and let z′ := r′1 and z′′ = r2; otherwise, define z′ = z′′ = zi. Similarly,
if r1, r2 ∈ V (tCy1) for all choices of R1, R2 in (9), then we choose such R1, R2 that y1Ar

′
2 and

y1Cr1 are maximal, and let y′ := r′2 and y′′ = r1; otherwise, define y′ = y′′ = y1. By (10),
zi, z

′, y′, y1 occur on A in order, and zi, z
′′, s, t, y′′, y1 occur on C in order.

Note that H has a path W from some y ∈ V (B)∪V (P−s)∪V (Q−t) to some w ∈ V (ziAz
′−

{z′, zi})∪V (ziCz′′−{z′′, zi})∪V (y′Ay1−{y′, y1})∪V (y′′Cy1−{y′′, y1}) such that W is internally
disjoint from K. For, otherwise, (H, zi, y1, z3−i, y2) is 3-planar, contradicting the existence of
the disjoint paths Y and Z. By (6), w /∈ V (A). If w ∈ V (ziAz

′−{z′, zi})∪V (y′Ay1−{y′, y1})
then we can find the desired P,Q. So assume w ∈ V (ziCz′′ − {z′′, zi}) ∪ V (y′′Cy1 − {y′′, y1}).
By (∗) and (1), y /∈ V (B − y2) and y /∈ V (P ∪Q). This forces y = y2, which is impossible as
NH(y2) = {w2}.

Remark. Note from the proof of Lemma 4.3 that the conclusions (ii) and (iii) hold for
those paths A,B,C that satisfy (a), (b), (c) and (d).
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Figure 1: An intermediate structure

5 Finding TK5

In this section, we prove Theorem 1.1. Let G be a 5-connected nonplanar graph and let
x1, x2, y1, y2 ∈ V (G) be distinct such that G[{x1, x2, y1, y2}] ∼= K−4 and y1y2 /∈ E(G). Let
w1, w2, w3 ∈ N(y2)− {x1, x2} be distinct and let G′ := G− {y2v : v /∈ {w1, w2, w3, x1, x2}}.

We may assume that G′ − x1x2 has an induced path L from x1 to x2 such that y1, y2 /∈
V (L), (G − y2) − L is 2-connected, and w1, w2, w3 ∈ V (L); for otherwise, the conclusion of
Theorem 1.1 follows from Lemma 3.2. Hence, G′ − x1x2 has an induced path X from x1 to
x2 such that y1 /∈ V (X), w1y2, w3y2 ∈ E(X), and G′ − X = G − X is 2-connected. Hence,
(G,X, x1, x2, y1, y2, w1, w2, w3) is a 9-tuple.

We may assume that there exist zi ∈ V (xiXy2) − {xi, y2} for i ∈ [2] such that H :=
G′− (X −{y2, z1, z2}) has disjoint paths Y, Z from y1, z1 to y2, z2, respectively; for, otherwise,
the conclusion of Theorem 1.1 follows from Lemma 4.1. We choose such Y,Z so that z1Xz2 is
maximal. Then (G,X, x1, x2, y1, y2, w1, w2, w3, z1, z2) is an 11-tuple.

By Lemma 4.2 and by symmetry, we may assume that

(1) for i ∈ [2], H has no path through zi, z3−i, y1, y2 in order (so y1zi /∈ E(G)),

and that there exist independent paths A,B,C in H with A and C from z1 to y1, and B from
y2 to z2. See Figure 1.

Let J(A,C) denote the (A∪C)-bridge of H containing B, and L(A,C) denote the union of
(A∪C)-bridges of H intersecting both A− {y1, z1} and C − {y1, z1}. We may choose A,B,C
such that the following are satisfied in the order listed:

(a) A,B,C are induced paths in H,

(b) whenever possible J(A,C) ⊆ L(A,C),

(c) J(A,C) is maximal, and

(d) L(A,C) is maximal.
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By Lemma 4.3 and its proof (see the remark at the end of Section 4), we may assume that

z2x2 ∈ E(X)

and that there exist disjoint paths P,Q in H from p, q ∈ V (B− y2) to c ∈ V (C)−{y1, z1}, a ∈
V (A) − {y1, z1}, respectively, and internally disjoint from A ∪ B ∪ C. By symmetry between
A and C, we assume that y2, p, q, z2 occur on B in order. We further choose A,B,C, P,Q so
that

(2) qBz2 is minimal, then pBz2 is maximal, and then aAy1 ∪ cCz1 is minimal.

Let B′ denote the union of B and the B-bridges of H not containing A ∪ C. Note that
all paths in H from A ∪ C to B′ and internally disjoint from B′ must have an end in B. For
convenience, let

K := A ∪B′ ∪ C ∪ P ∪Q.

Then

(3) H has no path from aAy1 − a to z1Cc− c and internally disjoint from K.

For, suppose S is a path in H from some vertex s ∈ V (aAy1−a) to some vertex s′ ∈ V (z1Cc−c)
and internally disjoint from K. Then z2Bq ∪Q ∪ aAz1 ∪ z1Cs′ ∪ S ∪ sAy1 ∪ y1Cc ∪ P ∪ pBy2
is a path in H through z2, z1, y1, y2 in order, contradicting (1).

We proceed by proving a number of claims from which Theorem 1.1 will follow. Our
intermediate goal is to prove (12) that H contains a path from y1 to Q − a and internally
disjoint from K. However, the claims leading to (12) will also be useful when we later consider
structure of G near z1.

(4) B′−y2 has no cut vertex contained in qBz2−z2 and, hence, for any q∗ ∈ V (B′)−{y2, q},
B′ − y2 has independent paths P1, P2 from z2 to q, q∗, respectively.

Suppose B′ − y2 contains a cut vertex u with u ∈ V (qBz2 − z2). Choose u so that uBz2 is
minimal. Since H−{y2, z1} is 2-connected, there is a path S in H from some s′ ∈ V (uBz2−u)
to some s ∈ V (A ∪ C ∪ P ∪Q)− {p, q} and internally disjoint from K. By the minimality of
uBz2, the u-bridge of B′ − y2 containing uBz2 has independent paths R1, R2 from z2 to s′, u,
respectively. By the minimality of qBz2 in (2), S is disjoint from (P ∪Q ∪A ∪ C)− {z1, y1}.
If s = z1 then (R1 ∪ S) ∪A ∪ (y1Cc ∪ P ∪ pBy2) is a path in H through z2, z1, y1, y2 in order,
contradicting (1). So s = y1. Then (z1Aa ∪Q ∪ qBu ∪R2) ∪ (R1 ∪ S) ∪ (y1Cc ∪ P ∪ pBy2) is
a path in H through z1, z2, y1, y2 in order, contradicting (1).

Hence, B′ − y2 has no cut vertex contained in qBz2 − z2. Thus, the second half of (4)
follows from Menger’s theorem.

(5) We may assume that G′ has no path from aAy1−a to z1Xz2 and internally disjoint from
K ∪X, and no path from cCy1 − c to z1Xz2 − z1 and internally disjoint from K ∪X.
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For, suppose S is a path in G′ from some s ∈ V (aAy1−a)∪V (cCy1−c) to some s′ ∈ V (z1Xz2)
and internally disjoint from K ∪X, such that s′ 6= z1 if s ∈ V (cCy1 − c). If s′ = z1 then s ∈
V (aAy1−a); so z2Bq∪Q∪aAz1∪S∪sAy1∪y1Cc∪P∪pBy2 is a path in H through z2, z1, y1, y2 in
order, contradicting (1). If s′ = z2 then s = y1 by (2); so (z1Aa∪Q∪qBz2)∪S∪y1Cc∪P∪pBy2
is a path in H through z1, z2, y1, y2 in order, contradicting (1). Hence, s′ ∈ V (z1Xz2)−{z1, z2}.

Suppose s′ ∈ V (z1Xy2−z1). Let P1, P2 be the paths in (4) with q∗ = p. If s ∈ V (aAy1−a)
then z2x2 ∪ z2Xy2 ∪ (P2 ∪ P ∪ cCy1) ∪ (P1 ∪ Q ∪ aAz1 ∪ z1Xx1) ∪ (y1As ∪ S ∪ s′Xy2) ∪
G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2. If s ∈ V (cAy1− c) then
z2x2∪z2Xy2∪(P2∪P ∪cCz1∪z1Xx1)∪(P1∪Q∪aAy1)∪(y1Cs∪S∪s′Xy2)∪G[{x1, x2, y1, y2}]
is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2.

Now assume s′ ∈ V (z2Xy2 − z2). If s ∈ V (aAy1 − a), then z1Xx1 ∪ z1Xy2 ∪ C ∪ (z1Aa ∪
Q∪ qBz2 ∪ z2x2)∪ (y1As∪S ∪ s′Xy2)∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices
x1, x2, y1, y2, z1. If s ∈ V (cCy1 − c), then z1Xx1 ∪ z1Xy2 ∪ A ∪ (z1Cc ∪ P ∪ pBz2 ∪ z2x2) ∪
(y1Cs ∪ S ∪ s′Xy2) ∪ G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z1.
This completes the proof of (5).

Denote by L(A) (respectively, L(C)) the union of (A∪C)-bridges of H not intersecting C
(respectively, A). Let C ′ = C ∪L(C). The next four claims concern paths from x1Xz1− z1 to
other parts of G′. We may assume that

(6) N(x1Xz1−{x1, z1}) ⊆ V (C ′)∪ {x1, z1}, and that G′ has no disjoint paths from s1, s2 ∈
V (x1Xz1 − z1) to s′1, s

′
2 ∈ V (C), respectively, and internally disjoint from K ∪X such

that s′2 ∈ V (cCy1 − c), x1, s1, s2, z1 occur on X in order, and z1, s
′
1, s
′
2, y1 occur on C in

order.

First, suppose N(x1Xz1−{x1, z1}) 6⊆ V (C ′)∪{x1, z1}. Then there exists a path S in G′ from
some s ∈ V (x1Xz1)−{x1, z1} to some s′ ∈ V (A∪B′∪P ∪Q)−{c, y1, y2, z1, z2} and internally
disjoint from K ∪ X. If s′ ∈ V (A) − {z1, y1} then y1Cc ∪ P ∪ pBy2, S ∪ s′Aa ∪ Q ∪ qBz2
contradict the choice of Y , Z. If s′ ∈ V (Q − a) then y1Cc ∪ P ∪ pBy2, S ∪ s′Qq ∪ qBz2
contradict the choice of Y , Z. If s′ ∈ V (P − c) then let P1, P2 be the paths in (4) with q∗ = p;
now z2x2∪ z2Xy2∪ (P1∪Q∪aAy1)∪ (P2∪pPs′∪S ∪ sXx1)∪ (C ∪ z1Xy2)∪G[{x1, x2, y1, y2}]
is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2. If s′ ∈ V (B′) − {y2, p, q} then let P1, P2

be the paths in (4) with q∗ = s′; now z2x2 ∪ z2Xy2 ∪ (P1 ∪Q∪ aAy1)∪ (P2 ∪S ∪ sXx1)∪ (C ∪
z1Xy2) ∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2.

Now assume G′ has disjoint paths S1, S2 from s1, s2 ∈ V (x1Xz1 − z1) to s′1, s
′
2 ∈ V (C),

respectively, and internally disjoint from K ∪X such that s′2 ∈ V (cCy1− c), x1, s1, s2, z1 occur
on X in order, and z1, s

′
1, s
′
2, y1 occur on C in order. Let P1, P2 be the paths in (4) with q∗ = p.

Then z2x2 ∪ z2Xy2 ∪ (P1 ∪Q∪ aAy1)∪ (P2 ∪P ∪ cCs′1 ∪S1 ∪ s1Xx1)∪ (y1Cs′2 ∪S2 ∪ s2Xy2)∪
G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2. This completes the
proof of (6).

(7) For any path W in G′ from x1 to some w ∈ V (K)−{y1, z1} and internally disjoint from
K ∪ X, we may assume w ∈ V (A ∪ C) − {y1, z1}. (Note that such W exists as G is
5-connected and G′ −X is 2-connected.)

For, let W be a path in G′ from x1 to w ∈ V (K)−{y1, z1} and internally disjoint from K ∪X,
such that w /∈ V (A ∪ C)− {z1, y1}. Then w 6= y2 as NG′(y2) = {w1, w2, w3, x1, x2}.
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Suppose w ∈ V (B′ − q). Let P1, P2 be the paths in (4) with q∗ = w. Then z2x2 ∪ z2Xy2 ∪
(P1 ∪ Q ∪ aAy1) ∪ (P2 ∪W ) ∪ (C ∪ z1Xy2) ∪ G[{x1, x2, y1, y2}] is a TK5 in G′ with branch
vertices x1, x2, y1, y2, z2.

So assume w /∈ V (B′ − q). Let P1, P2 be the paths in (4) with q∗ = p. If w ∈ V (P − c)
then z2x2 ∪ z2Xy2 ∪ (P1 ∪Q∪ aAy1)∪ (P2 ∪ pPw ∪W )∪ (C ∪ z1Xy2)∪G[{x1, y1, x2, y2}] is a
TK5 in G′ with branch vertices x1, x2, y1, y2, z2. If w ∈ V (Q − a) then z2x2 ∪ z2Xy2 ∪ (P1 ∪
qQw ∪W ) ∪ (P2 ∪ P ∪ cCy1) ∪ (A ∪ z1Xy2) ∪ G[{x1, x2, y1, y2}] is a TK5 in G′ with branch
vertices x1, x2, y1, y2, z2. This completes the proof of (7).

(8) We may assume that G′ has no path from x1Xz1− x1 to y1 and internally disjoint from
K ∪X.

For, suppose that R is a path in G′ from some x ∈ V (x1Xz1−x1) to y1 and internally disjoint
from K ∪X. Then x 6= z1; as otherwise z2Bq ∪Q ∪ aAz1 ∪R ∪ y1Cc ∪ P ∪ pBy2 is a path in
H through z2, z1, y1, y2 in order, contradicting (1). Let P1, P2 be the paths in (4) with q∗ = p.
We use W from (7). If w ∈ V (A)−{z1, y1} then z2x2∪z2Xy2∪ (P1∪Q∪aAw∪W )∪ (P2∪P ∪
cCy1) ∪ (R ∪ xXy2) ∪ G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2.
If w ∈ V (C) − {z1, y1} then z2x2 ∪ z2Xy2 ∪ (P1 ∪ Q ∪ aAy1) ∪ (P2 ∪ P ∪ cCw ∪W ) ∪ (R ∪
xXy2)∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2. This completes
the proof of (8).

(9) If G′ has a path from x1Xz1 − {x1, z1} to cCy1 − c and internally disjoint from K ∪X,
then we may assume that

• w ∈ V (C)− {y1, z1} for any choice of W in (7), and

• G′ has no path from x2 to C − {y1, z1} and internally disjoint from K ∪X.

Let S be a path in G′ from some s ∈ V (x1Xz1)−{x1, z1} to V (cCy1−c) and internally disjoint
from K ∪X. Since X is induced in G′ − x1x2, G

′[H − {y2, z1, z2}+ s] is 2-connected. Hence,
since N(x1Xz1 − {x1, z1}) ⊆ V (C ′) ∪ {x1, z1} (by (6)), G′ has independent paths S1, S2 from
s to distinct s1, s2 ∈ V (C) − {z1, y1} and internally disjoint from K ∪ X. Because of S, we
may assume that z1, s1, s2, y1 occur on C in this order and s2 ∈ V (cCy1 − c).

Suppose we may choose the W in (7) with w ∈ V (A) − {z1, y1}. Let P1, P2 be the paths
in (4) with q∗ = p. Then z2x2 ∪ z2Xy2 ∪ sXx1 ∪ sXy2 ∪ (P2 ∪ P ∪ cCs1 ∪ S1) ∪ (S2 ∪ s2Cy1 ∪
y1x2)∪(P1∪Q∪aAw∪W )∪G[{x1, x2, y2}] is a TK5 in G′ with branch vertices s, x1, x2, y2, z2.

Now assume that S′ is a path in G′ from x2 to some s′ ∈ V (C) − {y1, z1} and internally
disjoint from K ∪X. Then S1∪S2∪S′∪ (C− z1) contains independent paths S′1, S

′
2 which are

from s to y1, x2, respectively (when s′ ∈ V (z1Cs2)− {s2, z1}), or from s to c, x2, respectively
(when s′ ∈ V (s2Cy1− y1)). If S′1, S

′
2 end at y1, x2, respectively, then sXx1 ∪ sXy2 ∪ S′1 ∪ S′2 ∪

(y1Aa ∪Q ∪ qBy2) ∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices s, x1, x2, y1, y2. So
assume that S′1, S

′
2 end at c, x2, respectively. Let P1, P2 be the paths in (4) with q∗ = p. Then

sXx1 ∪ sXy2 ∪ z2x2 ∪ z2Xy2 ∪ (S′1 ∪ P ∪ P2) ∪ S′2 ∪ (P1 ∪Q ∪ aAy1 ∪ y1x1) ∪G[{x1, x2, y2}] is
a TK5 in G′ with branch vertices s, x1, x2, y2, z2. This completes the proof of (9).

The next two claims deal with L(A) and L(C). First, we may assume that

(10) L(A) ∩A ⊆ z1Aa.
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For any (A ∪ C)-bridge R of H contained in L(A), let z(R), y(R) ∈ V (R ∩ A) such that
z(R)Ay(R) is maximal. Suppose for some (A∪C)-bridge R1 of H contained in L(A), we have
y(R1)Az(R1) 6⊆ z1Aa. Let R1, . . . , Rm be a maximal sequence of (A∪C)-bridges of H contained
in L(A), such that for each i ∈ {2, . . . ,m}, Ri contains an internal vertex of

⋃i−1
j=1 z(Rj)Ay(Rj)

(which is a path). Let a1, a2 ∈ V (A) such that
⋃m

j=1 z(Rj)Ay(Rj) = a1Aa2. By (c), J(A,C)
does not intersect a1Aa2 − {a1, a2}; so a1, a2 ∈ V (aAy1). By (d), G′ has no path from
a1Aa2 − {a1, a2} to C and internally disjoint from K ∪ X. Hence by (5), {a1, a2, x1, x2, y2}
is a cut in G. Thus, G has a separation (G1, G2) such that V (G1 ∩G2) = {a1, a2, x1, x2, y2},
P ∪Q ∪B′ ∪ C ∪X ⊆ G1, and a1Aa2 ∪

(⋃m
j=1Rj

)
⊆ G2.

Let z ∈ V (G2)− {a1, a2, x1, x2, y2} and assume z1, a1, a2, y1 occur on A in order. Since G
is 5-connected, G2− y2 contains four independent paths R1, R2, R3, R4 from z to x1, x2, a1, a2,
respectively. Now R1 ∪ R2 ∪ (R3 ∪ a1Az1 ∪ z1Xy2) ∪ (R4 ∪ a2Ay1) ∪ (y1Cc ∪ P ∪ pBy2) ∪
G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z. This completes the
proof of (10).

(11) We may assume that if R is an (A∪C)-bridge of H contained in L(C) and R∩(cCy1−c) 6=
∅ then |V (R) − V (C)| = 1 and N(R − C) = {c1, c2, s1, s2, y2}, with c1Cc2 = c1c2 and
s1s2 = s1Xs2 ⊆ z1Xx1.

For any (A∪C)-bridge R in L(C), let z(R), y(R) ∈ V (C∩R) such that z(R)Cy(R) is maximal.
Let R1 be an (A ∪ C)-bridge of H contained in L(C) such that R1 ∩ (cCy1 − c) 6= ∅.

Let R1, . . . , Rm be a maximal sequence of (A ∪ C)-bridges of H contained in L(C), such
that for each i ∈ {2, . . . ,m}, Ri contains an internal vertex of

⋃i−1
j=1 z(Rj)Cy(Rj) (which is

a path). Let c1, c2 ∈ V (C) such that c1Cc2 =
⋃m

j=1 z(Rj)Cy(Rj), with z1, c1, c2, y1 on C in
order. So c2 ∈ V (cCy1− y1) and, hence, c1 ∈ V (cCy1− y1) by (c) and the existence of P . Let
R′ =

⋃m
j=1Rj ∪ c1Cc2.

By (c), G′ has no path from c1Cc2−{c1, c2} to V (B′∪P ∪Q)∪{z1} and internally disjoint
from K ∪ X. By (d), G′ has no path from c1Cc2 − {c1, c2} to A − {y1, z1} and internally
disjoint from K ∪X.

If N(x2)∩V (R′−{c1, c2}) 6= ∅ then by (5) and (9), N(R′−{c1, c2}) = {x1, x2, y2, c1, c2}. Let
z ∈ V (R′)−{x1, x2, c1, c2}. Since G is 5-connected, R′ has independent paths W1,W2,W3,W4

from z to x1, x2, c2, c1, respectively. Now W1 ∪W2 ∪ (W3 ∪ c2Cy1) ∪ (W4 ∪ c1Cz1 ∪ z1Xy2) ∪
(y1Aa ∪Q ∪ qBy2) ∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z.

So we may assume N(x2)∩V (R′−{c1, c2}) = ∅. Since G is 5-connected, it follows from (5)
that there exist distinct s1, s2 ∈ V (x1Xz1−z1)∩N(R′−{c1, c2}). Choose s1, s2 such that s1Xs2
is maximal and assume that x1, s1, s2, z1 occur on X in this order. By (6), {c1, c2, s1, s2, y2}
is a 5-cut in G; so G has a separation (G1, G2) such that V (G1 ∩ G2) = {c1, c2, s1, s2, y2}
and R′ ∪ c1Cc2 ∪ s1Xs2 ⊆ G2. By (6) again, (G2 − y2, c1, c2, s1, s2) is planar (since G is
5-connected). If |V (G2)| ≥ 7 then by Lemma 2.3, (i) or (ii) or (iii) holds. So we may assume
that |V (G2)| = 6, and we have the assertion of (11).

We may assume that

(12) H has a path Q′ from y1 to some q′ ∈ V (Q− a) and internally disjoint from K.

First, suppose that y1 ∈ V (J(A,C)). Then, H has a path Q′ from y1 to some q′ ∈ V (P −
c) ∪ V (Q − a) ∪ V (B) internally disjoint from K. We may assume q′ ∈ V (P − c) ∪ V (B);
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for otherwise, q′ ∈ V (Q − a) and the claim holds. If q′ ∈ V (P − c) ∪ V (y2Bq − q) then
(P − c) ∪ (y2Bq − q) ∪Q′ contains a path Q′′ from y1 to y2; so z1Xx1 ∪ z1Xy2 ∪ C ∪ (z1Aa ∪
Q∪ qBz2 ∪ z2x2)∪Q′′ ∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z1.
Hence, we may assume q′ ∈ V (qBz2 − q). Let P1, P2 be the paths in (4) with q∗ = q′. Then
z2x2 ∪ z2Xy2 ∪ (P1 ∪Q ∪ aAz1 ∪ z1Xx1) ∪ (P2 ∪Q′) ∪ (y1Cc ∪ P ∪ pBy2) ∪G[{x1, x2, y1, y2}]
is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2.

Thus, we may assume that y1 /∈ V (J(A,C)). Note that y1 /∈ V (L(A)) (by (10)) and
y1 /∈ V (L(C)) (by (8) and (11)). Hence, since y1y2 /∈ E(G) and G is 5-connected, y1 is
contained in some (A ∪ C)-bridge of H, say D1, with D1 ⊆ L(A,C) and D1 6= J(A,C). Note
that |V (D1)| ≥ 3 as A and C are induced paths. For any (A ∪ C)-bridge D of H with that
D ⊆ L(A,C) and D 6= J(A,C), let a(D) ∈ V (A) ∩ V (D) and c(D) ∈ V (C) ∩ V (D) such that
z1Aa(D) and z1Cc(D) are minimal.

Let D1, . . . , Dk be a maximal sequence of (A ∪ C)-bridges of H with Di ⊆ L(A,C) (so
Di 6= J(A,C)) for i ∈ [k], such that, for each i ∈ [k − 1], Di+1 ∩ (A ∪ C) is not contained in⋃i

j=1(c(Dj)Cy1∪a(Dj)Ay1), and Di+1∩(A∪C) is not contained in
⋂i

j=1(z1Cc(Dj)∪z1Aa(Dj)).

Note that for any i ∈ [k],
⋃i

j=1 a(Dj)Ay1 and
⋃i

j=1 c(Dj)Cy1 are paths. So let ai ∈ V (A)

and ci ∈ V (C) such that
⋃i

j=1 a(Dj)Ay1 = aiAy1 and
⋃i

j=1 c(Dj)Cy1 = ciCy1. Let Si =

aiCy1 ∪ ciCy1 ∪
(⋃i

j=1Dj

)
.

Next, we claim that for any l ∈ [k] and for any rl ∈ V (Sl) − {al, cl} there exist three
independent paths Al, Cl, Rl in Sl from y1 to al, cl, rl, respectively. This is clear when l = 1;
note that if al = y1, or cl = y1, or rl = y1 then Al, or Cl, or Rl is a trivial path. Now assume
that the assertion is true for some l ∈ [k− 1]. Let rl+1 ∈ V (Sl+1)− {al+1, cl+1}. When rl+1 ∈
V (Sl)−{al, cl} let rl := rl+1; otherwise, let rl ∈ V (Dl+1) with rl ∈ V (alAy1−al)∪V (clCy1−cl).
By induction hypothesis, there are three independent paths Al, Cl, Rl in Sl from y1 to al, cl, rl,
respectively. If rl+1 ∈ V (Sl)−{al, cl} then Al+1 := Al ∪alAal+1, Cl+1 := Cl ∪ clCcl+1, Rl+1 :=
Rl are the desired paths in Sl+1. If rl+1 ∈ V (Dl+1)−V (A∪C) then let Pl+1 be a path in Dl+1

from rl to rl+1 and internally disjoint from A ∪ C; we see that Al+1 := Al ∪ alAal+1, Cl+1 :=
Cl ∪ clCcl+1, Rl+1 := Rl ∪Pl+1 are the desired paths in Sl+1. So we may assume by symmetry
that rl+1 ∈ V (al+1Aal − al+1). Let Ql+1 be a path in Dl+1 from rl to al+1 and internally
disjoint from A ∪ C. Now Rl+1 := Al ∪ alArl+1, Cl+1 := Cl ∪ clCcl+1, Al+1 := Rl ∪ Ql+1 are
the desired paths in Sl+1.

We claim that J(A,C) has no vertex in (akAy1 ∪ ckCy1) − {ak, ck}. For, suppose there
exists r ∈ V (J(A,C)) such that r ∈ V (akAy1 − ak) ∪ V (ckCy1 − ck). Then let Ak, Ck, Rk be
independent (induced) paths in Sk from y1 to ak, ck, r, respectively. Let A′, C ′ be obtained
from A,C by replacing akAy1, ckCy1 with Ak, Ck, respectively. We see that J(A′, C ′) contains
J(A,C) and r, contradicting (c).

Therefore, a ∈ V (z1Aak) and c ∈ V (z1Cck). Moreover, no (A ∪ C)-bridge of H in L(A)
intersects akAy1−ak (by (10)). Let S′k be the union of Sk and all (A∪C)-bridges of H contained
in L(C) and intersecting ckCy1−ck. Then by (5) and (11), N(S′k−{ak, ck})−{ak, ck, x2, y2} ⊆
V (x1Xz1). Since G is 5-connected, N(S′k − {ak, ck})− {ak, ck, x2, y2} 6= ∅.

We may assume that N(S′k − {ak, ck}) − {y2, x2, ak, ck} 6= {x1}. For, otherwise, G has a
separation (G1, G2) such that V (G1 ∩ G2) = {ak, ck, x1, x2, y2} and X ∪ P ∪ Q ⊆ G1, and
S′k ⊆ G2. Clearly, |V (G1)| ≥ 7. Since G is 5-connected and y1y2 /∈ E(G), |V (G2)| ≥ 7. Hence,
the assertion follows from Lemma 2.4.
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Thus, we may let z ∈ N(S′k − {ak, ck}) − {ak, ck, x1, x2, y2} such that x1Xz is maximal.
Then z 6= z1. For otherwise, let r ∈ V (S′k) − {ak, ck} such that rz1 ∈ E(G). Let r′ = r if
r ∈ V (Sk) and, otherwise, let r′ ∈ V (ckCy1 − ck) with r′r ∈ E(G) (which exists by (11)).
Let Ak, Ck, Rk be independent (induced) paths in Sk from y1 to ak, ck, r

′, respectively. Now
z2Bq ∪Q∪ aAz1 ∪ (z1rr

′ ∪Rk)∪Ck ∪ ckCc∪ P ∪ pBy2 is a path in H through z2, z1, y1, y2 in
order, contradicting (1).

Let C∗ be the subgraph of G induced by the union of x1Xz−x1 and the vertices of L(C)−C
adjacent to ckCy1 − ck (each of which, by (11), has exactly two neighbors on C and exactly
two on x1Xz1). Clearly, C∗ is connected. Let Gz = G[x1Xz ∪ S′k + x2] and let G′z be the
graph obtained from Gz − {x1, x2} by contracting C∗ to a new vertex c∗.

Note that G′z has no disjoint paths from ak, ck to c∗, y1, respectively; as otherwise, such
paths, ckCc ∪ P ∪ pBy2, and akAa ∪ Q ∪ qBz2 give two disjoint paths in H which would
contradict the choice of Y, Z. Hence, by Lemma 2.1, there exists a collection A of subsets of
V (G′z) − {ak, ck, c∗, y1} such that (G′z,A, ak, ck, c∗, y1) is 3-planar. We choose A so that each
member of A is minimal and, subject to this, |A| is minimal.

We claim that A = ∅. For, let T ∈ A. By (10), T ∩V (L(A)) = ∅. Moreover, T ∩V (L(C)) =
∅; for otherwise, by (11), c∗ ∈ N(T ) and |N(T ) ∩ V (C)| = 2; so by (11) again (and since C
is induced in H), (G′z,A− {T}, ak, ck, c∗, y1) is 3-planar, contradicting the choice of A. Thus,
G[T ] has a component, say T ′, such that T ′ ⊆ L(A,C). Hence, for any t ∈ V (T ′), L(A,C) has
a path from t to aAy1 − y1 (respectively, cCy1 − y1) and internally disjoint from A∪C. Since
G is 5-connected, {x1, x2} ∩N(T ′) 6= ∅. Therefore, for some i ∈ [2], G′ contains a path from
xi to aAy1 − y1 as well as a path from xi to cCy1 − y1, both internally disjoint from K ∪X.
However, this contradicts (9).

Hence, (G′z, ak, ck, c
∗, y1) is planar. So by (6) and (11), (Gz − x2, ak, ck, z, x1, y1) is planar.

By (9) and (10), N(x2)∩V (Sk) ⊆ V (akAy1). Therefore, since (Gz −x2)− akAy1 is connected
(by (10)), (Gz, ak, ck, z, x2) is planar.

We claim that {ak, ck, z, x2, y2} is a 5-cut in G. For, otherwise, by (7) and (9), G′ has a
path S1 from x1 to z1Cck − {z1, ck} and internally disjoint from K ∪ X. However, G′ has a
path S2 from z to ckXy1 − ck and internally disjoint from K ∪X. Now S1, S2 contradict the
second part of (6).

Hence, G has a separation (G1, G2) such that V (G1 ∩ G2) = {ak, ck, z, x2, y2}, B′ ∪ P ∪
Q ∪X ⊆ G1, and Gz ⊆ G2. Clearly, |V (Gi)| ≥ 7 for i ∈ [2]. So (i) or (ii) or (iii) follows from
Lemma 2.3.

Now that we have established (12), the remainder of this proof will make heavy use of Q′.
Our next goal is to obtain structure around z1, which is done using claims (13) – (17). We
may assume that

(13) x1z1 ∈ E(X), w ∈ V (A)− {y1, z1} for any choice of W in (7), and G′ has no path from
x2 to (A ∪ C)− y1 and internally disjoint from K ∪Q′ ∪X.

Let P1, P2 be the paths in (4) with q∗ = p. Suppose x1z1 /∈ E(X). Let x1s ∈ E(X). By (6),
G has a path S from s to some s′ ∈ V (C)− {y1, z1} and internally disjoint from K ∪Q′ ∪X
(as Q′ ⊆ J(A,C)). Hence, z2x2 ∪ z2Xy2 ∪ (P1 ∪ qQq′ ∪Q′) ∪ (P2 ∪ P ∪ cCs′ ∪ S ∪ sx1) ∪ (A ∪
z1Xy2) ∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2.

Now suppose W is a path in (7) ending at w ∈ V (C)−{y1, z1}. Then z2x2∪ z2Xy2∪ (P1∪

25



qQq′ ∪Q′)∪ (P2 ∪P ∪ cCw∪W )∪ (A∪ z1Xy2)∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch
vertices x1, x2, y1, y2, z2.

Finally, suppose G′ has a path S from x2 to some s ∈ V (A ∪ C) − {y1} and internally
disjoint from K ∪Q′ ∪X. If s ∈ V (A− y1) then z1x1 ∪ z1Xy2 ∪C ∪ (z1As∪ S)∪ (Q′ ∪ q′Qq ∪
qBy2)∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z1. If s ∈ V (C−y1)
then z1x1 ∪ z1Xy2 ∪ A ∪ (z1Cs ∪ S) ∪ (Q′ ∪ q′Qq ∪ qBy2) ∪G[{x1, x2, y1, y2}] is a TK5 in G′

with branch vertices x1, x2, y1, y2, z1.

(14) We may assume that G′ has no path from y2Xz2 to (A∪C)− y1 and internally disjoint
from K ∪ Q′ ∪X, and no path from y2Xz1 − z1 to A − z1 and internally disjoint from
K ∪Q′ ∪X.

First, suppose S is a path in G′ from some s ∈ V (y2Xz2) to some s′ ∈ V (A ∪ C) − {y1}
and internally disjoint from K ∪ Q′ ∪ X. Then s 6= y2 as NG′(y2) = {w1, w2, w3, x1, x2}. If
s′ ∈ V (C−y1) then z1x1∪z1Xy2∪A∪(z1Cs′∪S∪sXx2)∪(Q′∪q′Qq∪qBy2)∪G[{x1, x2, y1, y2}]
is a TK5 in G′ with branch vertices x1, x2, y1, y2, z1. If s′ ∈ V (A − y1) then z1x1 ∪ z1Xy2 ∪
C ∪ (z1As

′ ∪ S ∪ sXx2) ∪ (Q′ ∪ q′Qq ∪ qBy2) ∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch
vertices x1, x2, y1, y2, z1.

Now suppose S is a path in G′ from s ∈ V (y2Xz1 − z1) to s′ ∈ V (A − z1) and internally
disjoint from K ∪ Q′ ∪X. Let P1, P2 be the paths in (4) with q∗ = p. Then z2x2 ∪ z2Xy2 ∪
(P1 ∪ qQq′ ∪Q′) ∪ (P2 ∪ P ∪ cCz1 ∪ z1x1) ∪ (y1As

′ ∪ S ∪ sXy2) ∪G[{x1, x2, y1, y2}] is a TK5

in G′ with branch vertices x1, x2, y1, y2, z2.

(15) We may assume that

• J(A,C) ∩ (z1Cc− c) = ∅,
• any path in J(A,C) from A − {y1, z1} to (P − c) ∪ (Q − a) ∪ (Q′ − y1) ∪ B and

internally disjoint from K ∪Q′ must end on (Q ∪Q′)− q, and

• for any (A ∪ C)-bridge D of H with D 6= J(A,C), if V (D) ∩ V (z1Cc− c) 6= ∅ and
u ∈ V (D) ∩ V (z1Ay1 − z1) then J(A,C) ∩ (z1Au− {z1, u}) = ∅.

First, suppose there exists s ∈ V (J(A,C)) ∩ V (z1Cc − c). Then H has a path S from s to
some s′ ∈ V (P − c)∪ V (Q− a)∪ V (Q′ − y1)∪ V (B − y2) and internally disjoint from K ∪Q′.
If s′ ∈ V (Q′− y1)∪V (Q− a)∪V (z2Bp− p) then S ∪ (Q′− y1)∪ (Q− a)∪ (z2Bp− p) contains
a path S′ from s to z2; so S′ ∪ sCz1 ∪A∪ y1Cc∪P ∪ pBy2 is a path in H through z2, z1, y1, y2
in order, contradicting (1). Hence, s′ ∈ V (P − c) ∪ V (y2Bp − y2) and, by (2), s = z1. Let
P1, P2 be the paths in (4) with q∗ = p (if s′ ∈ V (P − c)) or q∗ = s′ (if s′ ∈ V (y2Bp)−{p, y2}).
Then S ∪ (P − c)∪ P2 contains a path S′ from z1 to z2. Let W,w be given as in (7). By (13),
w ∈ V (A) − {y1, z1}. Now z2x2 ∪ z2Xy2 ∪ z1x1 ∪ z1Xy2 ∪ S′ ∪ (P1 ∪ Q ∪ aAw ∪W ) ∪ (C ∪
y1x2) ∪G[{x1, x2, y2}] is a TK5 in G′ with branch vertices x1, x2, y2, z1, z2.

Now suppose S is path in J(A,C) from s ∈ V (A− {y1, z1}) to s′ ∈ V (P − c) ∪ V (B − q)
and internally disjoint from K ∪Q′. Since NG′(y2) = {w1, w2, w3, x1, x2}, s′ 6= y2. Let P1, P2

be the paths in (4) with q∗ = p (if s′ ∈ V (P −c)) or q∗ = s′ (if s′ ∈ V (B−q)). Let S′ be a path
in P2 ∪ S ∪ (P − c) from s to z2. Let W,w be given as in (7). By (13), w ∈ V (A) − {y1, z1}.
Hence, z2x2 ∪ z2Xy2 ∪ (P1 ∪ qQq′ ∪Q′)∪ (S′ ∪ sAw ∪W )∪ (C ∪ z1Xy2)∪G[{x1, x2, y1, y2}] is
a TK5 in G′ with branch vertices x1, x2, y1, y2, z2.
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Finally, suppose D is some (A∪C)-bridge of H with D 6= J(A,C), v ∈ V (D)∩V (z1Cc−c),
and u ∈ V (D)∩V (z1Ay1− z1). Then D has a path T from v to u and internally disjoint from
K ∪Q′. If there exists s ∈ V (J(A,C)) ∩ V (z1Au− {z1, u}) then J(A,C) has a path S from s
to some s′ ∈ V (Q− a) and internally disjoint from K. Now z2Bq ∪ qQs′ ∪ S ∪ sAz1 ∪ z1Cv ∪
T ∪ uAy1 ∪ y1Cc ∪ P ∪ pBy2 is a path in H through z2, z1, y1, y2 in order, contradicting (1).

(16) We may assume L(A) = ∅.

Suppose L(A) 6= ∅. For each (A ∪ C)-bridge R of H contained in L(A), let a1(R), a2(R) ∈
V (R ∩ A) with a1(R)Aa2(R) maximal. Let R1, . . . , Rm be a maximal sequence of (A ∪ C)-
bridges of H contained in L(A), such that for i = 2, . . . ,m, Ri contains an internal vertex of⋃i−1

j=1(a1(Rj)Aa2(Rj)) (which is a path). Let a1, a2 ∈ V (A) such that
⋃m

j=1 a1(Rj)Aa2(Rj) =
a1Aa2. Let L =

⋃m
j=1Rj .

By (c), J(A,C) ∩ (a1Aa2 − {a1, a2}) = ∅. By (d), L(A,C) ∩ (a1Aa2 − {a1, a2}) = ∅. By
(10), a1, a2 ∈ V (z1Aa). So z1 /∈ N(L ∪ a1Aa2 − {a1, a2}). Hence by (14), V (z1Xz2 − y2) ∩
N(L ∪ a1Aa2 − {a1, a2}) = ∅. By (13), x2 /∈ N(L ∪ a1Aa2 − {a1, a2}). Thus, {a1, a2, x1, y2} is
a cut in G separating L from X, which is a contradiction (since G is 5-connected).

(17) z1c ∈ E(C), z1y2 ∈ E(G), and z1 has degree 5 in G.

Let C∗ be the union of z1Cc and all (A ∪ C)-bridges of H intersecting z1Cc − c. By (15),
V (C∗ ∩ J(A,C)) = {c}.

Suppose (17) fails. If C∗ = z1Cc then, since A,C are induced paths and L(A) = ∅ (by (16)),
z1y2 ∈ E(G) and z1Cc 6= z1c; so any vertex of z1Cc−{c, z1} would have degree 2 in G (by (15)),
a contradiction. So C∗ − z1Cc 6= ∅. Since G′ −X is 2-connected, (C∗ − z1Cc) ∩ (A− z1) 6= ∅
by (c) (and since J(A.C) ∩ ∩(zCc− c) = ∅ by (15)). Moreover, if |V (z1Cc)| ≥ 3 then there is
a path in C∗ from z1Cc− {c, z1} to A− z1 and internally disjoint from A ∪ C.

Let a∗ ∈ V (A ∩ C∗) with a∗Ay1 minimal, and let u ∈ V (z1Xy2) with uXy2 minimal such
that u is a neighbor of (C∗ − c) ∪ (z1Aa

∗ − a∗).
We may assume that {a∗, c, u, x1, y2} is a 5-cut in G. First, note, by (15), that J(A,C) ∩

((z1Aa
∗ − a∗) ∪ (z1Cc − c)) = ∅ (in particular, a∗ ∈ V (z1Aa)). Hence, if u = z1 then it

is clear from (d), (13) and (14) that {a∗, c, u, x1, y2} is a 5-cut in G. So we may assume
u 6= z1. Then G′ contains a path T from u to u′ ∈ V (A − z1) and internally disjoint from
A∪cCy1∪P ∪Q∪Q′∪B′. Suppose {a∗, c, u, x1, y2} is not a 5-cut in G. Then by (d), (13) and
(14), G′ has a path R from r ∈ V (z1Xu−u) to r′ ∈ V (P − c)∪V (Q−a)∪V (Q′− y1)∪V (B′)
and internally disjoint from K ∪ X. Note that r′ 6= y2 as NG′(y2) = {w1, w2, w3, x1, x2}. If
r′ ∈ V (B′−q) then let P1, P2 be the paths in (4) with q∗ = r′; now z2x2∪z2Xy2∪ (P1∪qQq′∪
Q′) ∪ (P2 ∪ R ∪ rXx1) ∪ (y1Au

′ ∪ T ∪ uXy2) ∪ G[{x1, x2, y1, y2}] is a TK5 in G with branch
vertices x1, x2, y1, y2, z2. If r′ ∈ V (P − c) then let P1, P2 be the paths in (4) with q∗ = p; now
z2x2∪z2Xy2∪(P1∪qQq′∪Q′)∪(P2∪pPr′∪R∪rXx1)∪(y1Au

′∪T∪uXy2)∪G[{x1, x2, y1, y2}] is
a TK5 in G with branch vertices x1, x2, y1, y2, z2. Now assume r′ ∈ V (Q−a)∪V (Q′−y1). Then
(Q−a)∪(Q′−y1)∪R contains a path R′ from r to q. Let P1, P2 be the paths in (4) with q∗ = p;
now z2x2∪z2Xy2∪ (P1∪R′∪rXx1)∪ (P2∪P ∪cCy1)∪ (y1Au

′∪T ∪uXy2)∪G[{x1, x2, y1, y2}]
is a TK5 in G with branch vertices x1, x2, y1, y2, z2.

Thus, G has a separation (G1, G2) such that V (G1∩G2) = {a∗, c, u, x1, y2}, uXx2∪P ∪Q ⊆
G1, and C∗ ∪ z1Cc ∪ z1Aa

∗ ⊆ G2. Suppose G2 − y2 contains disjoint paths T1, T2 from u, x1
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to a∗, c, respectively. Let P1, P2 be the paths in (4) with q∗ = p. Then z2x2 ∪ z2Xy2 ∪ (P1 ∪
qQq′∪Q′)∪ (P2∪P ∪T2)∪ (y1Aa

∗∪T1∪uXy2)∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch
vertices x1, x2, y1, y2, z2. So we may assume that such T1, T2 do not exist. Then by Lemma 2.1,
(G2 − y2, u, x1, a

∗, c) is planar (as G is 5-connected). If |V (G2)| ≥ 7 then, by Lemma 2.3, (i)
or (ii) or (iii) holds. Hence, we may assume that |V (G2)| = 6 and, hence, we have (17).

We have now forced a structure around z1. Next, we study the structure of G′[B′ ∪ y2Xz2]
to complete the proof of Theorem 1.1. We may assume that

(18) (G′[B′ ∪ y2Xz2], p, q, z2, y2) is 3-planar.

For, otherwise, by Lemma 2.1, G′[B′ ∪ y2Xz2] has disjoint paths R1, R2 from q, p to y2, z2,
respectively. Now z1x1∪z1Xy2∪A∪(z1Cc∪P ∪R2∪z2x2)∪(R1∪qQq′∪Q′)∪G[{x1, x2, y1, y2}]
is a TK5 in G′ with branch vertices x1, x2, y1, y2, z1. So we may assume (18).

Since G is 5-connected, G is (5, V (K ∪Q′ ∪ y2Xx2 ∪ z1x1))-connected. Recall that w1y2 ∈
E(x1Xy2). Then w1y2 and w1Xz1 are independent paths in G from w1 to y2, z1, respectively.
So by Lemma 2.6, G has five independent paths Z1, Z2, Z3, Z4, Z5 from w1 to z1, y2, z3, z4, z5,
respectively, and internally disjoint from K ∪Q′ ∪ y2Xx2 ∪ z1x1, where z3, z4, z5 ∈ V (K ∪Q′ ∪
y2Xx2 ∪ z1x1). Note that we may assume Z2 = w1y2. Hence, Z1, Z2, Z3, Z4, Z5 are paths in
G′. By the fact that X is induced, by (14), and by (5) and (17), z3, z4, z5 ∈ V (P )∪V (Q−a)∪
V (Q′) ∪ V (B′ − y2). Recall that L(A) = ∅ from (16), and recall W and w from (7) and (13).

(19) We may assume that at least two of Z3, Z4, Z5 end in B′ − y2.

First, suppose at least two of Z3, Z4, Z5 end on P . Without loss of generality, let c, z3, z4, p
occur on P in this order. Let P1, P2 be the paths in (4) with q∗ = p. Then (Z1 ∪ z1x1) ∪Z2 ∪
z2x2∪z2Xy2∪(Z4∪z4Pp∪P2)∪(Z3∪z3Pc∪cCy1∪y1x2)∪(P1∪Q∪aAw∪W )∪G[{x1, x2, y2}]
is a TK5 in G′ with branch vertices w1, x1, x2, y2, z2.

Now assume at least two of Z3, Z4, Z5 are on Q∪Q′, say Z3 and Z4. Then Z3∪Z4∪Q∪Q′
contains two independent paths Z ′3, Z

′
4 from w1 to z′, q, respectively, where z′ ∈ {a, y1}. Hence

(Z1 ∪ z1x1) ∪ Z2 ∪ (Z ′3 ∪ z′Ay1) ∪ (Z ′4 ∪ qBz2 ∪ z2x2) ∪ (y2Bp ∪ P ∪ cCy1) ∪G[{x1, x2, y1, y2}]
is a TK5 in G′ with branch vertices w1, x1, x2, y1, y2.

So we may assume that z3 ∈ V (B′)−{p, q}, and hence Z3 = w1z3. Suppose none of Z4, Z5

ends in B′ − y2. Then we may assume z4 ∈ V (P − p). Let P1, P2 be the paths in (4) with
q∗ = z3. Then (Z1∪ z1x1)∪Z2∪ z2x2∪ z2Xy2∪ (Z3∪P2)∪ (P1∪Q∪aAw∪W )∪ (Z4∪ z4Pc∪
cCy1 ∪ y1x2) ∪G[{x1, x2, y2}] is a TK5 in G′ with branch vertices w1, x1, x2, y2, z2.

(20) We may assume that

• w1 has at most one neighbor in B′ that is in qBz2 or separated from y2Bp in
G′[B′ ∪ y2Xz2] by a 2-cut contained in qBz2, and

• w1 has at most one neighbor in B′ that is in y2Bp− y2 or separated from qBz2 in
G′[B′ ∪ y2Xz2] by a 2-cut contained in y2Bp.

Suppose there exist distinct v1, v2 ∈ N(w1) ∩ V (B′) such that for i ∈ [2], vi ∈ V (qBz2)
or G′[B′ ∪ y2Xz2] has a 2-cut contained in qBz2 and separating vi from y2Bp. Then, since
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(G′[B′∪y2Xz2], p, q, z2, y2) is 3-planar (by (18)) and H−y2 is 2-connected, G′[B′+w1]−y2Bp
contains independent paths S1, S2 from w1 to q, z2, respectively. Now w1Xx1 ∪ w1y2 ∪ (S1 ∪
qQq′ ∪Q′) ∪ (S2 ∪ z2x2) ∪ (y1Cc ∪ P ∪ pBy2) ∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch
vertices w1, x1, x2, y1, y2.

Now suppose there exist distinct v1, v2 ∈ N(w1)∩V (B′) such that for i ∈ [2], vi ∈ V (y2Bp)
or G′[B′ ∪ y2Xz2] has a 2-cut contained in y2Bp and separating vi from qBz2. Then, since
(G′[B′ ∪ y2Xz2], p, q, z2, y2) is 3-planar (by (18)) and H − y2 is 2-connected, G′[B′ + w1] −
(qBz2− z2) has independent paths S1, S2 from w1 to p, z2, respectively. Now w1Xx1 ∪w1y2 ∪
z2x2 ∪ z2Xy2 ∪S2 ∪ (S1 ∪P ∪ cCy1 ∪ y1x2)∪ (z2Bq ∪Q∪ aAw ∪W )∪G[{x1, x2, y2}] is a TK5

in G′ with branch vertices w1, x1, x2, y2, z2.

(21) G′[B′ ∪ y2Xz2] has a 2-separation (B1, B2) such that N(w1) ∩ V (B′ − y2) ⊆ V (B1),
pBq ⊆ B1, and y2Xz2 ⊆ B2.

Let z ∈ N(w1)∩V (B′) be arbitrary. If there exists a path S in B′− (pBy2∪ (qBz2− z2)) from
z2 to z then z2x2 ∪ z2Xy2 ∪ (z2Bq ∪ qQq′ ∪ Q′) ∪ (S ∪ zw1 ∪ w1Xx1) ∪ (y1Cc ∪ P ∪ pBy2) ∪
G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2. So we may assume that
such path S does not exist. Then, since (G′[B′ ∪ y2Xz2], p, q, z2, y2) is 3-planar (by (18)) and
G′−X is 2-connected, z ∈ V (y2Xp∪qBz2) (in which case let B′z = z and B′′z = G′[B′∪y2Xz2]),
or G′[B′ ∪ y2Xz2] has a 2-separation (B′z, B

′′
z ) such that B′z ∩ B′′z ⊆ y2Bp ∪ qBz2 ∪ y2Xz2,

z ∈ V (B′z −B′′z ) and z2 ∈ V (B′′z −B′z).
We claim that we may assume that w1 has exactly two neighbors in B′, say v1, v2, such

that v1 ∈ V (y2Bp−y2) or G′[B′∪y2Xz2] has a 2-cut contained in y2Bp and separating v1 from
qBz2, and v2 ∈ V (qBz2−z2) or G′[B′∪y2Xz2] has a 2-cut contained in qBz2 and separating v2
from y2Bp. This follows from (20) if for every choice of z, B′z ∩B′′z ⊆ y2Bp or B′z ∩B′′z ⊆ qBz2.
So we may assume that there exists v ∈ N(w1) ∩ V (B′) such that pBq ⊆ B′v and we choose v
and (B′v, B

′′
v ) with B′v maximal. If pBq ⊆ B′z for all choices of z then, by (18), we have (21).

Thus, we may assume that there exists z ∈ N(w1)∩V (B′) such that pBq 6⊆ B′z for any choice
of (B′z, B

′′
z ). Then B′z ∩B′′z ⊆ y2Bp or B′z ∩B′′z ⊆ qBz2. First, assume B′z ∩B′′z ⊆ qBz2. Then

by the maximality of B′v, B′− y2Bp has independent paths T1, T2 from z2 to q, z, respectively.
Hence, z2x2∪z2Xy2∪(T1∪qQq′∪Q′)∪(T2∪zw1∪w1Xx1)∪(y1Cc∪P∪pBy2)∪G[{x1, x2, y1, y2}]
is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2. Now assume B′z ∩ B′′z ⊆ y2Bp. Then
by (20), for any t ∈ N(w1) ∩ V (B′v), t /∈ V (y2Bp − y2) and G′[B′ ∪ y2Xz2] has no 2-cut
contained in y2Bp and separating t from qBz2. If for every choice of t ∈ N(w1) ∩ V (B′v), we
have t ∈ V (qBz2 − z2) or G′[B′ ∪ y2Xz2] has a 2-cut contained in qBz2 and separating t from
y2Bp then the claim follows from (20). Hence, we may assume that t can be chosen so that
t /∈ V (qBz2 − z2) and G′[B′ ∪ y2Xz2] has no 2-cut contained in qBz2 and separating t from
y2Bp. Then, by (18) and 2-connectedness of G′−X, G[B′+w1]− (qBz2−z2) has independent
paths S1, S2 from w1 to p, z2, respectively. Now w1Xx1 ∪w1y2 ∪ z2x2 ∪ z2Xy2 ∪S2 ∪ (S1 ∪P ∪
cCy1 ∪ y1x2) ∪ (z2Bq ∪ Q ∪ aAw ∪W ) ∪ G[{x1, x2, y2}] is a TK5 in G′ with branch vertices
w1, x1, x2, y2, z2.

Thus, we may assume that Z3 = w1v1, Z4 = w1v2, and Z5 ends at some v3 ∈ V (P ∪ Q ∪
Q′) − {a, p, q}. Suppose v3 ∈ V (P − p). Let P1, P2 be the paths in (4) with q∗ = v1. Then
w1Xx1 ∪ w1y2 ∪ z2x2 ∪ z2Xy2 ∪ (w1v1 ∪ P2) ∪ (Z5 ∪ v3Pc ∪ cCy1 ∪ y1x2) ∪ (P1 ∪ Q ∪ aAw ∪
W ) ∪G[{x1, x2, y2}] is a TK5 in G′ with branch vertices w1, x1, x2, y2, z2.
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Now assume v3 ∈ V (Q∪Q′)−{a, q}. Then (B′− y2Bp)∪Z5∪Q∪Q′∪ (A− z1)∪w1v2 has
independent paths R1, R2 from w1 to y1, z2, respectively. So w1Xx1∪w1y2∪R1∪(R2∪z2x2)∪
(y1Cc ∪ P ∪ pBy2) ∪ G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices w1, x1, x2, y1, y2.
This completes the proof of (21).

By (21), let V (B1 ∩ B2) = {t1, t2} with t1 ∈ V (y2Bp) and t2 ∈ V (qBz2). Choose {t1, t2}
so that B2 is minimal. Then we may assume that (G′[B2 + x2], t1, t2, x2, y2) is 3-planar.
For, otherwise, by Lemma 2.1, G′[B2 + x2] contains disjoint paths T1, T2 from t1, t2 to x2, y2,
respectively. Then z1x1 ∪ z1Xy2 ∪ A ∪ (z1Cc ∪ P ∪ pBt1 ∪ T1) ∪ (Q′ ∪ q′Qq ∪ qBt2 ∪ T2) ∪
G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z1.

Suppose there exists ss′ ∈ E(G) such that s ∈ V (z1Xw1 − w1) and s′ ∈ V (B2)− {t1, t2}.
Then s′ /∈ V (X), as X is induced in G′ − x1x2. By (19), (20) and (21), we may assume that
B1 − qBt2 contains a path R from z3 to p. By the minimality of B2 and 2-connectedness of
H−y2, (B2−t1)−(y2Xz2−z2) contains independent paths R1, R2 from z2 to s′, t2, respectively.
Now z2x2 ∪ z2Xy2 ∪ (R1 ∪ s′s ∪ sXx1) ∪ (R2 ∪ t2Bq ∪ qQq′ ∪Q′) ∪ (y1Cc ∪ P ∪R ∪ z3w1y2) ∪
G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z2.

Thus, we may assume that ss′ does not exist. Since G is 5-connected, {t1, t2, y2, x2} is not
a cut. So H has a path T from some t ∈ V (y2Xx2) − {y2, x2} to some t′ ∈ V (P ∪ Q ∪ Q′ ∪
A ∪ C)− {p, q} and internally disjoint from K ∪Q′. By (14), t′ /∈ V (A ∪ C)− {y1}.

If t′ ∈ V (P − p) then z1x1 ∪ z1Xy2 ∪A ∪ (z1Cc ∪ cP t′ ∪ T ∪ tXx2) ∪ (Q′ ∪ q′Qq ∪ qBy2) ∪
G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices x1, x2, y1, y2, z1. So we assume t′ ∈
V (Q ∪Q′)− {a, q}.

If q 6= q′ or t′ ∈ V (Q′) then (T ∪Q∪Q′)−q has a path Q∗ from t to y1; now z1x1∪z1Xy2∪
A ∪ (z1Cc ∪ P ∪ pBz2 ∪ z2x2) ∪ (Q∗ ∪ sXy2) ∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch
vertices x1, x2, y1, y2, z1. So assume q = q′ and t′ ∈ V (Q) − {a, q}. Then z1x1 ∪ z1Xy2 ∪ C ∪
(z1Aa∪aQt′∪T ∪ tXx2)∪ (Q′∪ qBy2)∪G[{x1, x2, y1, y2}] is a TK5 in G′ with branch vertices
x1, x2, y1, y2, z1.
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